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Abstract  
 
Recorded seismic signals are inevitably contaminated by       
noise in field acquisition. Attenuating the high-amplitude       
noises, such as swell noise, is really a big challenge in           
the seismic data processing. High-amplitude swell noise       
is a common sort of noise in marine seismic survey. It           
usually affects a number of neighboring traces, and can         
be observed in seismic data as vertical stripes. One of the           
first tasks in seismic data processing is the swell noise          
attenuation. However this is not a trivial task, if not          
applied in adequate way can damage the signal and         
consequently affect posterior processing steps and      
therefore, compromise seismic interpretation. In this work,       
several approaches are proposed using machine learning       
to identify contaminated traces by this noise. Future        
research direction includes the attenuation of swell noise        
using these classified traces. The classification of the        
traces individually is given by the best AI model tested: it           
was tested seven different AI models with four different         
input variables. The architectures that had      
frequency-based features presented better results overall,      
especially the multi-layer perceptron. 
 

Introduction 

 
In the last decades, machine learning techniques have        
been widely used in several fields of application, ranging         
from image processing (Majumdar A., 2019), from audio        
signal process to speech recognition (Bourlard H.;       
Morgan N. ,1994). Among the models that stand out most          
today are the convolutional neural network (CNN) models        
(LeCun, Yann; et al., 1998), which perform better than         
other models of machine learning, especially in the field         
of computer vision. Because of these reasons, Oil and         
Gas industry have been investing resources in the        

development of these technologies in different areas,       
such as geoscience, in order to bring an improvement in          
standard traditional techniques and even offer solutions to        
yet not solved problems. 
 
There are several examples of an application on        
literature. One of them is attenuate noise in seismic data          
with autoencoder network architecture (Mandelli, S. et al.,        
2019). There are other cases with neural networks MLP         
models to infer lithology, facies, porosity, and saturation        
of fluids (Zhang L.; Zhan C., 2017). Finally, (Waldeland         
A.U.; Solberg A.H.S.S., 2017) used CNN in convolution        
cascade to extract attributes and perform the       
classification of saline bodies. 
 
Noise attenuation has a fundamental roll in seismic data         
processing and seismic interpretation. Typically, these      
fading methods are constructed with filter techniques, that        
are based on previous knowledge of the characteristics of         
the noise. In the case of Swell noise, it is known that it is              
a high-amplitude noise that normally contains frequencies       
from 2-10Hz (Elboth T.; Hermansen D., 2009), usually it         
affects a number of neighboring traces and can be         
observed in seismic data as vertical stripes. 
 
One of the steps usually performed in seismic processing         
for noise attenuation is Fourier spectrum analysis. What        
is usually done in processing is the application of a tool           
based on filters. However, this approach is not effective         
when the noise and seismic signal occupy the same         
frequency range. Furthermore, the parameterization of      
the filtering is not intuitive, as they typically vary over time           
and can strongly alter the shape of the wave field in such            
a way as to impair subsequent steps. In this context, we           
believe that a trace-to-trace noise attenuation method is        
the best way to reduce the risk of information loss. The           
challenge of this new approach lies in identifying noisy         
traces within the seismic section. This challenge is the         
objective of this work. 
 
In the literature, there are different methodologies to        
classify acoustic signals but mostly employ features       
extracted from the coefficients of the Fourier transform as         
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inputs of the models. For example, the authors in (Piczak,          
K., 2015,) employ a convolutional network and use as         
input the spectrogram of the audio signals to train the          
model and perform the classification. The authors (Lim,        
H. et al., 2017) use the same input data methodology but           
the convolutional recurrent neural networks are used. 
 
The process of identifying noisy signals can also be         
interpreted as an anomaly detection problem. Some       
examples are presented in (Prego, T. D. M.; et al., 2016)           
and (Oh, D.; et al., 2018). Where (Prego, T. D. M.; et al.,             
2016) compare a mechanism that measures the similarity        
between the Short Time Fourier Transform (STFT)       
coefficients of a reference signal and the signal of         
interest, while (Oh, D.; et al., 2018) employs a         
self-encoder network convolutional phase that uses as       
input the spectrogram in the time-frequency domain       
obtained by STFT. The anomalous data is detected by         
exceeding a threshold of error of the reconstruction of the          
signal made by the model. 
 

Method 

Data Description 

The data that were used/collected for this project contains         
1935 seismic traces and were split between 3 classes:         
strong swell noise presence, weak swell noise presence        
and clean trace. We will use the notation C1, C2 and C3            
in order to simplify. Each of these classes contains 645          
samples, those were collected from a seismic section        
which contains 1.328 shots, as presented in Figure 1.         
Each Shot contains 150 traces and each of them contains          
1.793 samples with 4ms of sampling intervals, in total a          
recording time of 7.172s.  

 

Figure 1​- Swell Noise Noise examples in shots domain 

Four group of features were created to train out Machine          
Learning models. The first group of features was created         
based on statistical attributes such as the mean, standard         
deviation, minimum, maximum, rms amplitude and      
absolute value. In seismic section some characteristics       
such as refraction, direct wave and reflections were        
founded/located in the region between 200ms and       
3000ms. Those characteristics can affect these attributes       

calculation, therefore a mute was performed in the traces         
in the upper and lower regions, as shown in Figure 2.) 

 

Figure 2​ - Mute applied in Shots 

The second group of features was created with the         
Fourier transform (FFT) method, that was applied/used in        
order to obtain the spectrogram in the       
amplitude-frequency domain. Once spectrogram created,     
a sum of the amplitudes of 2 Hz in 2Hz until reaching the             
range of 30 Hz was performed.  

 

Figure 3​ - Frequency range from 2 in 2Hz up to 30Hz  

The third group of features is a combination of Inputs 1           
and 2. Finally, the fourth feature is an spectrogram in the           
time-frequency domain of each of the seismic traces,        
according to the example shown in Figure 4 . 

Figure 4 ​- Seismic trace Spectrogram 

We will call each of these features as: Input1, Input2, 
Input3 and Input4 respectively, in order to simplify. 

 

Machine Learning Models 

In this work we have tested seven different architectures         
for classification of seismic traces from the database        
described in the previous section. These architectures are        
described as follow: 1) Multilayer perceptron (MLP),       
composed by 15 neurons in the intermediate layer and 3          
neurons in the output layer, and hyperbolic tangent (tanh)         
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and Softmax as activation functions for each layer. 2)         
Logistic regression. 3) SVM with linear kernel. 4) SVM         
with RBF kernel. 5) Decision tree. 6) Random Forest. 7)          
CNN model composed by 2 convolutional layers with 16         
and 32 filters respectively, square kernel of dimension 3         
and activation function tanh; 2 pooling layers of        
dimension 2; and 3 neurons in the output layer with          
Softmax activation function. 

To perform the training of the models, the data set was           
divided into three subsets, named as training, validation        
and test, with proportions equal to 60%, 20% and 20%,          
respectively. The validation set was used to establish a         
premature training stop criterion in order to avoid        
overfitting. In addition, to analyze the generalization       
capacity of each of these architectures, the 5-folds        
cross-validation method was used. In both cases, as an         
evaluation metric the mean and the deviation of accuracy         
in each of the folds are used. 

 

Results 

Tables 1, 2, 3 and 4 show the numerical comparison          
results of the trained models for each proposed input. The          
best model in each case is highlighted in bold. 

We can observe that the architectures that use the Input1          
variable as input had lower performance than the others         
tested models, which leads us to infer that this input is not            
discriminant for this classification problem. It is verified        
through the confusion matrix that even opposing classes        
like C1 and C3 were mixed by the models. 

From the tables 2, 3 and 4 we can infer that the models             
with inputs that make use of characteristics in the         
frequency domain have better performance. We highlight       
the results of the Random-Forest model using as input         
the variable Input4, which obtain 81.1% of accuracy in the          
test set. Analyzing the confusion matrix, it was observed         
that classes C1 and C3 were well discriminated by the          
model, however class C2 remains a problem, this is         
expected because the ambiguity in class definition. 

Finally, we verify that the use of the statistical attributes          
(Input1) together with the frequency attributes (Input2),       
see table 3, did not lead to a considerable increase in the            
accuracy of the tested architectures. 

 
Input1 

 Cross Val Test Dataset 

 Acc Mean/ 
std 

Acc 
Conf Matrix 

c1 c2 c3 

MLP 
59.2/  
0.016 54.7 

38 30 61 

22 73 34 

18 10 101 

Logístic Reg 50.0/ 
0.011 

50.9 

38 24 67 

20 72 37 

34 8 87 

SVM Linear 
53.1/ 
0.013 48.8 

38 15 76 

24 58 47 

31 5 93 

SVM RBF 
50/ 

0.011 47.5 

48 17 64 

28 54 47 

42 5 82 

Decision tree 
55.8/ 
0.020 57.1 

67 23 39 

31 79 19 

34 20 75 

Random Forest 
61.4/ 

0.017 
63.82 

70 26 33 

29 83 17 

32 3 94 

Table 1 - Cross Validation and test sets results of          
Input1 for the following models: MLP, Reg. Logistic,        
Linear SVM, SVM RBF, Decision Tree and Random        
Forest. 

 
Input2 

 
Acc Mean/ 

std Acc 

Conf Matrix 

c1 c2 c3 

MLP 
77.5 

0.144 77.2 

87 21 21 

19 100 10 

11 6 112 

Logístic Reg 
68.4 

0.020 60.9 

42 34 53 

17 85 27 

18 2 109 

SVM Linear 
73.1 

0.019 69.5 

74 18 37 

23 79 27 

12 1 116 

SVM RBF 
60.1 

0.013 56.07 

43 12 74 

20 71 38 

26 0 103 

Decision tree 
69.1 

0.014 
74.8 

0.020 

78 33 18 

30 88 11 

22 14 93 

Random Forest 69.1 
0.014 

75.4 

91 20 18 

25 92 12 
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17 3 109 

Table 2 - Cross Validation and test sets results of          
Input2 for the following models: MLP, Reg. Logistic,        
Linear SVM, SVM RBF, Decision Tree and Random        
Forest. 

 
Input3 

 Cross Val Test Dataset 

 Acc Mean/ 
std 

Acc 
Conf Matrix 

c1 c2 c3 

MLP 
78.0  

0.021 78.2 

89 21 19 

21 99 9 

12 2 115 

Logístic Reg 
68.5 

0.016 61.4 

41 38 50 

15 86 28 

16 2 111 

SVM Linear 
73.0 

0.021 68.7 

71 20 38 

22 80 27 

13 1 115 

SVM RBF 
60.1 

0.022 54.7 

39 15 75 

18 72 39 

28 0 101 

Decision tree 
65.6 

0.034 66.6 

77 27 25 

35 80 14 

23 5 101 

Random Forest 
77.3 

0.025 
73.9 

86 25 18 

24 92 13 

21 0 108 

Table 3 - Cross Validation and test sets results of          
Input3 for the following models: MLP, Reg. Logistic,        
Linear SVM, SVM RBF, Decision Tree and Random        
Forest. 

 
Input4 

 Cross Val Test Dataset 

 
Acc Mean/ 

std Acc 

Conf Matrix 

c1 c2 c3 

MLP 
76.8 

0.026 75.7 

69 12 48 

19 106 4 

10 1 118 

Logístic Reg 
72.3 

0.031 74.1 

75 11 43 

14 108 7 

25 0 104 

SVM Linear 
75.2 

0.008 75.1 

80 6 43 

23 101 5 

19 0 110 

SVM RBF 
41.9 

0.010 0.379845 

41 0 88 

43 5 81 

28 0 101 

Decision tree 
70.0 

0.020 72.8 

79 28 22 

29 91 9 

11 6 112 

Random Forest 
80.8 

0.022 
81.1 

105 12 12 

26 89 14 

8 1 120 

CNN 
78.3 

0.029 
79.5 

82 9 38 

17 105 7 

8 0 121 

Table 4 - Cross Validation and test sets results of          
Input4 for the following models: MLP, Reg. Logistic,        
Linear SVM, SVM RBF, Decision Tree and Random        
Forest. 

 

 

Conclusions 

 

The different architectures shown in the work presented        
allowed the evaluation of swell noise in seismic data. The          
obtained results were satisfactory although these models       
have presented some limitations to differentiate class C2.        
This problem may be related with ambiguity in the         
characterization of the weak Swell Noise, which adds        
errors in the process off seismic trace annotation. Despite         
the fact that this work is very preliminary, it serves as an            
initial reference for noise classification in the seismogram. 

For future works, the method should be extended to test          
seismic trace classification with Swell Noise in further        
seismic section. 
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