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Abstract   

Mafic dike swarms intruding in the Borborema Province is 
a part of a great magmatic event associated with the 
continental break–up that formed the Equatorial Atlantic. 
The Borborema Province is a complex mosaic of crustal 
blocks of different ages, origin and evolution, which was 
amalgamated during the Brasiliano Orogeny, at the end of 
the Neoproterozoic and beginning of the Phanerozoic, in 
the context of the construction of the supercontinent 
Gondwana. Analyzing a geological framework within a 
tectonically complex area is a multidisciplinary task, be-
cause traditional geological tools do not provide the de-
sired answers. Airborne geophysical methods have been 
widely used due to the practicality and low cost of data 
acquisition to provide or improve geological mapping. 
This research presents a multivariate analysis of airborne 
geophysical data, using a Self-Organizing Map (SOM) 
approach.  The visual interpretation of integrated products 
and the technique of spatial analysis SOM were used for 
the integration of magnetic and gamma-ray spectrometric 
data search to identify and separate the lithological units 
based on their geophysical signatures. The SOM investi-
gation showed that the data could be clustered into seven 
domains.  These results reveal the efficacy of using SOM 
as a tool for geophysical data analysis and for semi-
automated mapping. 

 

Introduction 

Research in geosciences produces large amounts of 
geological, geochemical and geophysical data. However, 
such data are collected at a rate faster than it can be 
interpreted and integrated. The extraordinary volume of 
multidisciplinary data and the complexity of their interrela-
tionships create a need for the use of methods and tech-
nologies to improve the efficiency and effectiveness of 
interpretation of these data. To fill this gap, we have used 
data-mining methods that work in hyperspace of multivar-
iate parameters, one of these methods is the Self-
Organizing Maps (SOM), which is an unsupervised tech-
nique for the integrated and automated analysis of multi-
variable data. This technique facilitates and accelerates 
the speed at which data can be analyzed and interpreted. 

The study area is in the Precambrian Borborema Prov-
ince (Fig.1). In a broader sense, the Borborema Province 
is a shield that consists of Archean to Proterozoic inliers 
amalgamated along volcano-sedimentary belts (Neves et 
al., 2000). This area was affected by a Cretaceous Large 
Igneous Province (LIP) formed during the Equatorial 
Atlantic Ocean opening and, therefore, related to the 
break–up of the West Gondwana supercontinent (Hollan-
da et al., 2019). Due to its geological complexity there is a 
large amount of data collected from this area, makes it 
favorable for the use of SOM. SOM provides means to 
analyze and interrelationships between distinct datasets, 
spatially localized in an interactive way. 

Figure 1. Schematic geological map of northeastern Brazil with 

sedimentary basins, major shear zones and the study area (pol-
ygon in black). Inset: The South American continent and location 
of study area.  

SOM is a tool for analysis and visualization of n-
dimensional data, based on principles of vector quantiza-
tion and measures of vector similarity (Kohonen, 2001), 
which was proposed and disseminated in the 1980’s by 
Finnish professor Teuvo Kohonen (Kohonen and Somer-
vuo, 1998). Therefore, the SOM based techniques are 
also referred as Kohonen maps.  

Based on the principles of vector quantization and 
measures of vector similarity (Fraser and Dickson, 2007), 
the SOM approach aims to extract information from the 
database by recognition of samples with similar charac-
teristics and to find association between the variables 
through the formation of clusters. 
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The basic idea behind a SOM is to map the n-dimensional 
data patterns on to and 2D grid. This mapping attempts to 
preserve topological relationships. It means patterns that 
are close to the input space will be mapped to be close in 
the output space, and vice versa (Bação et al., 2005). The 
output data are a 2D map on a complex n-dimensional 
data set. 

The great advantage is that SOM can be applied to both 
categorical and continuous variables. One limitation of the 
SOM is that it scales all the data to the range [0,1], it is 
not possible to set weights for the importance of different 
datasets, which would sometimes be useful (Torppa et 
al., 2015).  

 

Data and Methods 

The geophysical data were provided by the Brazilian 
Geological Survey (CPRM). The magnetic data were 
previously corrected for the diurnal variations and the 
International Geomagnetic Reference Field (IGRF) and 
leveling errors. The datasets were collected in 2010 (Tab. 
1). All the geophysical processing (Fig.2) was performed 
using software Oasis Montaj 9.3. 

Due to the dipole character of the magnetic field we ap-
plied the Reduction to the Pole filter (RTP), aimed to 
centralize the magnetic anomaly on its sources (Blakely, 
1995). In addition, we applied the Analytical Signal Ampli-
tude filter (ASA) to the RTP anomalies to produce a max-
imum on the magnetic contrasts, highlighting the edges of 
the magmatic bodies. The ASA anomaly is symmetrical 
and occurs directly over the entire length of the edges of 
the bodies and the center of the boundary (Nabighian, 
1972). 

Five geologically significant geophysical parameters were 
then selected for further analysis as input to the SOM 
procedure: RTP, ASA, K, eTh and eU. 

Table 1. Airborne geophysical survey specifications. 

nominal flight height (m) 150 

flight-line direction N-S 

flight-line spacing (m) 2000 

tie-line direction E-W 

tie-line spacing 20,000 

magnetic field strength (nT) 25,670 

magnetic field inclination − 5.85° 

magnetic field declination − 8.78° 

Interval between consecutive 

geophysical measurements 

 0.1 s (magnetometer) 

1.0 s (espectromer) 

 

 

Figure 2. Workflow of magnetic (left) and gamma ray (right) 
processing. RTP – Reduction to The Pole, and ASA – Analytical 

Signal Amplitude filters. 

The original dataset consisted of 294696 samples with six 
magnetic and gamma spectrometric variables (Fig. 2). A 
set of ‘xy’ files were created for both the magnetic and 
gamma spectrometric datasets and the datasets were 
then combined to make one CSV file where each point in 
space within the dataset had a data value for each data. 
Due to the magnitude of the analytic signal, logarithmic 
values were used to produce more definition in the analy-
sis.  

The input control user for SOM program are: hexagonal 
shape, with a toroid geometry and size of 70x50 to the 
SOM grid. In each case, SOM initialization was random, 
the shape was toroid, the grid was hexagonal, and the 
neighborhood function was Gaussian. 

Self-Organizing Maps Analysis 

We used the SOM implementation developed by the 
Commonwealth Scientific and Industrial Research Organ-
ization (CSIRO, Australia) to create a 2D SOM grid.  

The technique is unsupervised, so no prior knowledge 
about the nature or number of clusters within the data is 
required, and analysis is based on measures of vector 
similarity. The SOM classifies data into distinct groups (or 
clusters), according to their similarities, which are repre-
sented as single vectors the BMUs (best-machine units) 
and represent nodes on the map (Fraser and Dickson, 
2007).  

The SOM nodes (values) are further clustered by a K-
means clustering based on a pre-determined number of 
classes defined by a Davies-Bouldin (DB) analysis (Da-
vies and Bouldin, 1979). 
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The SOM automatically calculates, for each input file 
data, the quantization error (QER). This error is a meas-
ure of the distance that a sample is from its node-vector 
(Fraser and Dickson, 2007). The greatest QE values 
represent anomalous data vectors. The high QER sam-
ples can also represent the edges or boundaries within a 
dataset, which for geology can be interpreted as lithologi-
cal contacts or body borders (Bação et al., 2005). 

 

Results 

A Self-Organized Map analysis, using a 70x50 sized map, 
was carried out on the five input geophysical parameters. 
The U-Matrix resulting from this analysis is shown in Fig-
ure 3A. The U-Matrix shows three areas with high dissimi-
larity, which coincide with elevated contributions of RTP 
and ASA. High similarity in U-matrix is related with medi-
ums contributions of K, eTh, eU. 

To obtain the optimized number of clusters, we applied a 
Davies-Bouldin analysis (Davies and Bouldin 1979) and 7 
clusters were chosen. Using K-means the 7 clusters were 
then produced (Figure 3B), based on the similarity be-
tween the node vectors (hexagons). Figure 3C shows the 
spatial distribution of input samples colour-code by their 
SOM-derived cluster number. The reference values de-
rived from the total data set, to classify each SOM-derived 
cluster’s component contribution, as shown in Table 2. 

As a result, the sets of magnetic and gamma-ray data 
were separated into seven different clusters, and those 
associated to the magnetic dikes were presented in a 
map (Fig. 3C). According to their geophysics characteris-
tics, the dikes swarms are assigned to clusters 1 and 6. 
The choice of these clusters was defined by the anoma-
lous pattern expected for dikes (high magnetic amplitudes 
and short wavelength). These clusters also presented the 
highest values of QER.  

The dikes interpreted from the SOM process were 
grouped into 3 different dikes swarms, Rio Ceará-Mirim 
(RCM), Riacho do Cordeiro (RC) and Canindé (C). 

Possible contamination of SOM solutions by high fre-
quency noise along the flight lines were duly considered 
in the interpretation of the results. 

Validation of the Results 

The results of this study were validated by field work of 
the above-mentioned techniques was done through the in 
an area preselected within the study area.  We collected 
66 rock samples of RCM dykes along the most expres-
sive magnetic anomalies, with no visible weathering pro-
cess, and measured their magnetic susceptibilities (MS).  

 

 

 

Table 2 Influence of variables in each cluster from SOM analyses.

 
Erro Q RTP (nT) ASA (nT) K (%) eTh (ppm) eU (ppm) 

Cluster 1 0.8470 

(High) 

-2.8398 

(Low) 

0.6374 

(High) 

3.3678 

(High) 

12.2782 

(Medium) 

1.5690 

(Low) 

Cluster 2 0.3735 
(Low) 

-46.2008 
(Low) 

0.0774 
(Medium) 

4.0106 
(High) 

11.7725 
(Medium) 

1.4937 
(Low) 

Cluster 3 0.3068 
(Low) 

-43.2815 
(Low) 

0.0754 
(Medium) 

1.3767 
(Medium) 

5.7564 
(Low) 

0.8070 
(Low) 

Cluster 4 0.4057 
(Low) 

3.7730 
(Low) 

0.0533 
(Low) 

2.6989 
(Medium) 

18.7306 
(Medium) 

2.0652 
(Medium) 

Cluster 5 0.3626 
(Low) 

68.3386 
(Medium) 

0.0866 
(Medium) 

1.9257 
(Medium) 

7.7591 
(Low) 

0.9813 
(Low) 

Cluster 6 1.1344 
(High) 

251.5091 
(High) 

1.0214 
(High) 

3.2211 
(High) 

11.9387 
(Medium) 

1.5603 
(Low) 

Cluster 7 0.6992 
(Medium) 

-10.1853 
(Low) 

0.0872 
(Medium) 

4.2914 
(High) 

32.5594 
(High) 

3.2306 
(Medium) 

Commented [DC1]: Esta sentença está muito confusa. 
Reescrever. 
Falta mais uma sentença no final do parágrafo, informando 
qual o grau de confirmação dos resultados do SOM com os 
dados de campo.  

Commented [DC2]: Seria interessante incluir um mapa 
geológico da área com os diques mapeados antes e as 
soluções do SOM sobrepostas. 
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Figure 3. (A) U-Matrix, with the nodes coloured to represent their similarity; (B) K-means cluster classification of the BMU vector values on 
the self-organized map; (C) Spatial map displaying each sample coded by its cluster colour resultant from the SOM analysis

Conclusions 

 

The application of the SOM method improves the delinea-
tion of the geophysical anomalies present in magnetic 
and gamma-ray maps and provides a higher resolution 
interpretive map. With the patterns of airborne geophysi-
cal data and the addition of SOM solutions directly related 
to the outcropped magmatic bodies, it was possible to 
estimate the distribution of these rocks and other buried 
bodies and thus to recognize the more realistic extension 
of the magmatic events in the Borborema Province.  

However, an appreciation of the effects and influence of 
each input variable characteristics is necessary to under-
stand the significance of the resultant SOM classes. The 
SOM analysis of airborne geophysical datasets produced 
7 clusters in the studied area in Borborema Province. In 
this study, SOM has proven to be an effective tool to map 
dike swarms which two clusters (1 and 6) were associat-
ed with this dikes. 
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