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Abstract 

 
The conventional approaches for automatic seismic facies 
identification are based on waveform patterns using the 
vector information from the post-stacked trace. On the 
other hand, the quantitative seismic interpretation based 
on pre-stack seismic data, such as amplitude variation 
with offset (AVO) analysis, may bring information about 
lithology and fluid in the porous media. 
Due to the large volume of information, the task of 
recognizing seismic pattern in pre-stack gathers can be 
overwhelming. To tackle this problem, recently, it has 
been proposed to combine deep autoencoders (which 
works as a non-linear dimensionality reduction technique) 
with clustering algorithms in order to extract seismic 
facies.  In this work, we explore this kind of technique by 
applying it to the pre-stack seismic data of a real field. 
When compared with the classical approaches, the 
results show higher resolution in the recognition of the 
architectural elements of deep-water deposits and greater 
accuracy in the identification of zones with different 
depositional facies tested by wells. 

Introduction 

The construction of flow simulation models that are 
predictive of hydrocarbon and water production from a 
proposed drainage network is the motivation for reservoir 
characterization studies (Marfut, 2001). The process 
involves the elaboration of predictive reliable geological 
models to the geological features existing within a 
production zone, such as the accurate identification of the 
lateral and vertical distribution of different lithotypes, fluids 
and small scale heterogeneities such as faults, joints and 
natural fractures. This is one of the most important steps 
for understanding the realistic behavior of the reservoir 
and one of the main sources of uncertainties. 

The methodologies to approach the problem are 
multidisciplinary, involving the geophysics, geology, 
geomechanics, petrophysics and engineering areas, and 
integrate several information sources with different 
resolutions, such as well profiles, stratigraphic samples, 
seismic data, posstack or prestack, 4D seismic, 
mechanical tests, production data, among others. The 
information from the wells, although more precise, is 
punctual and does not reflect the behavior of the field as a 

whole. In this way, the spatial identification of architectural 
and structural elements is dependent on the analysis and 
good representation of the spatial distribution of the main 
characteristics of the seismic signal. 

The studies of automatic classification of geological 
features in seismic data has been the subject of several 
scientific publications (Dumay and Fournier, 1988, 
Schultz et al, 1994, Fournier and Derain, 1995, Johann et 
al., 2001, Cunha, 2013). The approaches are based on 
statistical techniques that draw waveform patterns using 
the vector information from the post-stacked trace. 
Complementary analyzes of time series, in the time, 
frequency and time-frequency domain, are performed 
together to extract characteristics of the seismic signal 
(Matos et al., 2007). 

In the stacked seismic data, the signal amplitude is a 
mean of the contributions of the amplitudes obtained for 
different source-receiver offsets. This vector information 
does not allow to extract all the richness of details that 
exists in the data, different from the matrix of traces of the 
pre-stacked seismic data, which carries the information of 
the reflection coefficients as a function of the angles they 
were illuminated. Quantitative seismic interpretation 
based on pre-stack seismic data, such as amplitude 
variation with offset (AVO) analysis, allowing the 
extraction of geological features with greater accuracy 
and resolution, as lithology and fluid in the porous media 
(Simm and Bacon, 2014). 

The methodologies employed for extracting signal 
patterns in pre-stacked seismic data generally use the 
combination of post-stacking technique to extract 
waveform-based characteristics with dimensionality 
reduction techniques (e.g., principal component analysis) 
(Kourki and Riahi, 2014; Song et al., 2015). The 
dimensionality reduction is in fact the key point, when we 
change from vector to matrix data. Clustering algorithms, 
as K-means (Lloyd, 1982) or self-organizing map (SOM) 
(Kohonen, 1990) are based on the notion of distance or 
dissimilarity. In high dimensional space the data becomes 
sparse, and the concept of proximity, distance or nearest 
neighbour may not even be qualitatively meaningful 
(Bellman, 1961, Weber et al., 1998; Aggarwal et al, 
2001). Those phenomena are usually named as “curse of 
dimensionality”. To tackle this problem, recently, it has 
been proposed to combine deep autoencoders with 
clustering algorithms in order to extract seismic facies 
(Qian et al., 2018). Deep-Learning appears as a non-
linear statistical approach for patterns recognition of the 
elastic information within the common-depth-point (CDP) 
gathers. The autoencoder is used to learn efficient data 
codings, reducing the data dimensionality. 
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In this paper, we apply the methodology of Denoising 
convolutional autoencoder proposed by Qian et al., 2018, 
in a real field of quartz-rich siliciclastic reservoir 
associated with Campanian turbidite deposits in an 
offshore basin. We discuss in some detail the issues 
involved in the method and show some results. 
Comparison with other classical methods shows 
improvement in resolution and accuracy.  

Method 

The input data are the region of interest (for example, a 
window around the horizon), and the pre-stack CDP 
gathers. For each point of the region of interest, a time-
offset panel is extracted from the CDP gathers. The 
panels are parametrized by the number of samples and 
the number of offsets to be considered. The goal is the 
identification of a certain number k of facies present in the 
data. 

Therefore, we can assume that the input variables are a 

set of matrices {Xi, i=1...N}, in the space 21xNN
X , 

where N1 is the number of time samples and N2 is the 
number of offsets. In order to identify the facies, we can 
treat each matrix Xi as a vector and apply a clustering 
method over this set of vectors. Clustering means to 
aggregate the points (vectors) in a number k of collections 
according to certain similarities. The most popular method 
is the K-Means (Lloyd, 1982). K-Means finds the best 
centroids by alternating between (1) assigning data points 
to clusters based on the current centroids (2) choosing 
centroids (the center point of a cluster) based on the 
current assignment of data points to clusters. 

In the context of the present work, the space X has the 
dimension of all possible gray images. However, the 
actual pre-stack images used are only a small subset of 
X. Work with a high dimension space involves problems 
known as “curse of dimensionality” (Bellman, 1961). So, 
assuming that the real pre-stack images form a manifold 
embedded in X, we will first transform the data with a 
nonlinear mapping fθ : X → Z, where θ are learnable 
parameters and Z is the latent feature space. The 
dimensionality of Z is smaller than the X. The set of 
transformed points {zi} will be the input to the clustering 
algorithm. Thus, the method has two steps: (1) the fθ 
building and (2) the clustering method application.  

To parametrize fθ, it will be used a Denoising 
Convolutional Autoencoder (DCAE). An autoencoder (AE) 
(LeCun, 1987) is a type of artificial neural network used to 
learn efficient data codings. AE’s are composed by two 
subnets: the encoder, which generates the code (latent 
feature space) for each input Xi, and a decoder, which 

receives the code and makes the reconstruction iX̂ , as 

similar as possible to the original input. The training of the 
AE is done minimizing the reconstruction error. As it does 
not depend on labelled data, it is an unsupervised 
learning method.  

In a convolutional autoencoder (CAE), the encoder is 
composed by a sequence of convolutional and max 
pooling layers. A convolutional layer (LeCun, 1989) has a 
set of filters, all of them with the same size. As the filter 
size is less than the input size, the weights that define the 

filter are applied over the input as a convolution operation. 
This permits to identify patterns in the input image in a 
way that is invariant with translation. The max pooling 
layer down samples the input. Typically, it runs a 2x2 
mask over the input, taking the maximum value and 
shifting with stride of 2 along both directions, reducing the 
output size. This implementation of an encoder can be 
seen as a pyramid filter extracting features with different 
levels of abstraction (or scale).  

The decoder, on the other hand, implements an inverted 
pyramid: it is composed by a sequence of convolutions 
and upsampling layers. Upsampling layer repeats the 
rows and columns of the data by the number of rows and 
lines of the input image.  

As an extension of AE, denoising autoencoders (DAE) 
learns to approximate the original input by training on the 
input vectors with noises.  DAE is designed to reconstruct 
the original data from the corrupted version of the original 
images (Vincent et al, 2008), the process of which forces 
the hidden layer to discover more robust features and 
prevents overfitting noises. Figure 1 shows schematically 
the structure of DCAE (a convolutional DAE).  

 

 

Figure 1 - The structure of DCAE. 

 

Once trained the DCAE network (the first step of the 
method), we use the Encoder to make the transformation 
fθ : X → Z for all time-frequency panels. Observe that the 
input for the Encoder are the same data used in the 
DCAE training. The code set is submitted to a clustering 
algorithm, obtaining a cluster identification (a number) for 
each input element. This result - the seismic facies - is, 
then mapped over the region of interest (ROI).  Figure 2 
describes visually this second step. 
 

 
Figure 2 - The second step of the method. 
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Results 

The method was applied in a real field of quartz-rich 
siliciclastic associated with Maastrichtian turbidite 
deposits in an offshore basin. The conceptual 
deposicional model of the field is based on changes in the 
depositional energy gradient in the physiographic 
paleoenvironment of slope. The major trapping 
mechanism involved in the region is stratigraphic, with the 
top and lateral seals provided by overlying shale. The 
Figure 3 illustrates a seismic dip section and the 
interpreted reservoir top and base crossing the wells 1 
and 2.  

 

Figure 3 - Seismic dip section and the interpreted 
reservoir top and base crossing the wells 1 and 2. 

 

Petrophysics and geology analysis in the existing wells 
have shown that the reservoir is mostly composed of 
conglomerate, sandstone, shaly sand, laminate facies, 
and shale, based on core and well-log information. The 
turbidite reservoir has low to medium porosity saturated 
by gas. Although this petrophysical property suffers 
reduction due to diagenetic processes, pore-filling clay 
deposition, and reservoir compaction. The compressional-
to-shear velocity ratio (VP/VS) generally increases with 
the clay content in a quartz-rich turbidities sedimentary 
rock. So, the elastic property can be used as an indicator 
of reservoir quality. Due to these effects, we can observe 
AVO answer in the commons-depth-points gathers on the 
clastic reservoir with dominance of class III anomalies. 

In this work, the reference horizon to select the data 
window was the top of the reservoir. The chosen interval 
comprised 96ms below it. The DCAE was trained with 
634068 images, each one with 24 samples in time and 40 
offsets. The feature space generated was a vector space 
with 64 components (with a dimensionality reduction from 
960 to 64). Four examples of time-offset panels extracted 
from the CDP gathers, its correspondent feature maps 
encoded by the DCAE and the reconstructed images are 
shown in Figure 4. 

 

 
Figure 4 - (a) Four examples of a time-offset panels 
extracted from the CDP gathers; (b) Features maps 
encoded by the DCAE, and (c) reconstructed images. 
 

The features generated by the DCAE Encoder were 
inputs to the K-Means algorithm, which generates the five 
facies map of the turbidite reservoir shown in Figure 5. 

To evaluate the effectiveness of the deep autoencoders 
methodology, we compared the algorithm with two 
conventional methods used to extract seismic facies. The 
first one uses SOM to identify the clusters from the post-
stack traces. The result obtained with this method is 
shown in Figure 6. The second approach has the partial 
stack volumes of near, mid and far as inputs; the data are 
submitted to a linear dimensionality reduction, using 
principal component analysis (PCA), and the facies are 
obtained by SOM clustering method. The results are 
shown in Figure 7. 

The three methodologies were capable to recognize the 
deep-water geologic features of the reservoir such as 
lobes, channel complex and crevasses splays.  

However, the map generated with the algorithm DCAE 
(Figure 5) shows architectural elements with better 
resolution and was able to recognize facies associated 
with different clay contents as the sedimentary lobes 
drilled by the wells 1 and 2. One possible interpretation 
for this map associates green color regions with 
channeled geometries corresponding to the environments 
of high-depositional slope. The facie in brown is related to 
the fill of a mini-basin in a high energy phase of the 
depositional system. This lobe was drilled by the well 1 
and is mostly composed of conglomerate and sandstone.  
The facie in orange is a lobe associated with avulsions of 
the channel system in the Well 1 to Well 2 direction and 
the sedimentary redistribution in a low energy phase. This 
lobe was drilled by the well 2 and is mostly composed of 
shaly sand, laminate facies and sandstone. The 
classification of different facies obtained by DCAE 
allowed improved geophysical interpretation and gave 
new insights on the depositional system. 
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Figure 5 – Five facies map obtained by DCAE+K-Means. 

 

 

Figure 6 – Five facies map obtained by SOM from post-
stack data. 

 

Figure 7 – Five facies map obtained by SOM from near, 
mid and far volumes submitted to linear dimensionality 
reduction (PCA). 

 

Finally, to clarify the role of the dimensionality reduction 
obtained by the DCAE encoder in this example, we ran 
the K-Means directly over the set of time-offset images. 
The result is show in Figure 8. Comparing Figure 5 and 
Figure 8, we can observe that the clustering result without 
DCAE is more unstable: there are much more points with 
three or more facies in its local neighborhood. The 
homogeneous areas are greater in Figure 5 than in Figure 
8. And, again, the difference between the two lobes is 
evident only in Figure 5. 
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Figure 8 – Five facies map obtained by K-Means with no 
dimensionality reduction. 

 

Conclusions 

 
The DCAE allows extracting features from pre-stack 
seismic data with a high level of abstraction and in a non-
linear way. Using those features as input to a clustering 
method it can be obtained seismic facies map using the 
richness of the pre-stack data.  When compared with the 
classical approaches, the results show higher resolution 
in the recognition of the architectural elements of deep-
water deposits and greater accuracy in the identification 
of zones with different depositional facies tested by wells. 
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