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Abstract 

Refrapy is a multiplatform package of open-source 
programs developed with Python 3.4 for seismic 
refraction data processing. The algorithm presented 
allows the processing of seismic sections, picking of 
first arrivals of refracted waves and inversion by least 
squares method to generate a model of velocities up to 
two layers. The objective of the work was to create an 
open-source program for refraction data processing. 
The program was applied for the processing of 
synthetic and real data. A well established seismic 
data processing software was used as reference to 
compare the calculated velocity models. The results 
presented by our open-source program were 
compatible with the results of the commercial package 
used as reference, both for real and synthetic data 
analysis. 

Introduction 

Geophysical data processing often requires the use of 
computer programs due to the large number of 
samples and mathematical routines that need to be 
applied. The purchase and maintenance of licenses of 
commercial programs generate huge investments for 
research institutions, such as universities. Also, many 
software packages are sold with several modules that 
are often not used, configuring a waste of resources.  

Most programs that are used on geophysical data 
processing come from international companies. The 
development of programs for geophysical applications 
in Brazil is limited and usually not available to the 
general community. This project aims to develop 
programs for refraction seismic data processing that 
obtain results compatible with commercial software. 
Validation of the results produced by the software is 
made by a set of inversion calculations on synthetic 
and real field data.  

The Refrapy package (Fig. 1), developed here,  is an 
open-source software with a graphical interface for 
reading, processing, picking first breaks on SEG2 and 
SEGY seismic sections and computing a time-terms 
inversion to create a velocity model of the subsurface 
up to two layers. All code is written in Python. The 

libraries Numpy (Walt et al., 2011), Scipy (Jones et al., 
2001), Matplotlib (Hunter, 2007) and Obspy 
(Beyreuther et al., 2010) are required prior to using 
Refrapy. The graphic interface is based on the Tkinter 
module, which already comes with Python installation 
on Windows and needs to be installed separately like 
the other dependencies on Unix based systems. Full 
source code and documentation can be obtained 
under the terms of the Gnu Public License (version 3 
or later) from https://github.com/viictorjs/Refrapy.  

 

 
 Figure 1 – Launcher interface of the Refrapy package. 

 

Theory and Method 

 The program was written in Python 3, making use of 
some external libraries. Reading of SEG2 and SEGY 
waveform files is achieved by the reading algorithm of 
the Obspy framework. The plot of the read seismic 
sections and all other plots of the software, including 
amplitudes shading, relies on the extense plot functions 
of Matplotlib. All mathematical operations involved on 
the processing of the seismic traces, such as 
normalization of traces, apply/removal of gain on 
amplitudes, frequency filters and the inversion itself use 
the Numpy arrays architecture. The Tkinter GUI is 
designed to simplify the use of the program, also 
providing interactive tools along with Matplotlib in a way 
that it is possible for users to click on seismograms to 
pick first arrival times, preview live travel-time curves, 
draw apparent velocity lines and identify layers in travel-
time curves. 

 The Sisref program is the interpretation module, which 
is based on the time-terms analysis suggested by 
Scheidegger & Willmore (1957) and Willmore & 
Bancroft (1960), where a linear system is assembled 
from the direct and refracted wave travel time vectors. 
The model parameters were the velocities of each 
layer and the thicknesses below each geophones. The 
inversion process used relies on a least squares 
approach, with a regularization term based on a 

https://github.com/viictorjs/Refrapy
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smoothness matrix included in the objective function, 
to stabilize the problem (Meju, 1994). 

The time-term approach has been widely applied for 
decades all around the world to interpret the geometry 
of irregular refractors on shallow seismic refraction 
surveys. Scheidegger and Willmore (1957) suggest 
that the travel time of a refracted wave is directly 
affected by delay times, or time-terms. Given 
sufficiently dense coverage, it is possible to determine 
the two-dimensional distribution of propagation velocity 
for the materials immediately below the boundary, and 
all of the delay times which describe the transmission 
of the waves through the upper layer. A conventional 
time-term solution assumes that the material below the 
boundary has a uniform propagation velocity, and that 
the delay time for any given survey point is the same 
for all the ray paths which begin and end at that point. 
When applying the time-term method, one is likely to 
start without prior knowledge of the structure, and 
must, therefore, make a trial solution which ignores the 
effects of possible inclinations of the refracting 
boundary and other structural anomalies. Even the 
identification of onsets can be in doubt until trial values 
of time-terms are available for insertion on time-
distance plots (Willmore, 1969). As detailed by 
Willmore & Bancroft (1960), the use of the least 
squares approach might be applied to solve the 
inverse problem of the time-terms linear equations. 

The problem is to determine the constants in systems 
of equations for direct (1) and refracted (2) arrivals, of 
the types 
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Assuming that m receivers observe waves from a total 
of n sources, up to nm equations of forms (1) and (2) 
might be obtained. Apart from v, the problem contains 

n+m unknowns. The search for physical parameters 
that generate a theoretical model as close as possible 
to the actual geological model in situations such as this 
is known as the inverse problem (Menke, 1984). 

Rewriting these linear systems into a stochastic 
expression, we get 
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where    is a vector of travel times, G is a coeficiente 

matrix and  ⃗⃗  is the unknowns parameters vector. 
Rewriting (1) and (2) into the (4) matrix form, we get 
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for i = 1,2,3,...,,m and j = 1,2,3,...,n. Once    and G are 
defined, it’s possible to calculate a solution for the  ⃗⃗  
vector using an ordinary least squares approach 
(Willmore & Bancroft (1960); Menke, 1984), of form 
 

 ⃗⃗⃗            ⃗  (7) 
 

 Once the first arrival times of each opened seismic 
section is picked on the software, the interpretation of 
the travel-time curves needs to be done. At this point, 
the user should identify, by clicking, if a specific arrival 
time represents layer 1 (direct wave with a v1 velocity) 
or layer 2 (refracted wave with v2 > v1). All clicked 
arrival times are then included in a specific numpy array 

object for each existing layer (   vectors). After all layers 
are identified by the user, the algorithm builds a G 
matrix for all existing layer (a n dimensional numpy 
array object), technically being ready to compute the 
inversion described in (7) to estimate m (if the layer 
selections can be invertible). 
 

 The direct solution calculated by (7) solves     , for the 

direct wave problem, and     , for the refracted layers, 

due to the velocity parameter usually being a well 
resolved unknown (Hatton et al., 1986; Meju, 1994), but 
might not yield the best possible time-terms for the real 
model of the surface refractors (6), as result of the 
geological formation of the survey area or even an 

unstable     inversion. 
 

 Inversion problems in geophysics often deal with 
overdetermined systems of equations, where an 
undetermined number of solutions are possible due to a 
high amount of data (Menke, 1984; Meju, 1994). A priori 
information of at least one of the unknowns is the best 
possible way to constraint the linear system into 
computing a unique solution for the problem (Hatton et 
al., 1986). When a priori information is not available, the 

best approach one could hope for to solve the non-
uniqueness of the inversion is to add smoothness 
constraints in the system of equations (i.e. adding 
smoothness relations between the unknown 
parameters) (Meju, 1994). An often applied estimative 
when creating such smoothness constraints is that the 
refractors have small angulations, which, along with a 
small spacing between the survey receivers, may 
suggest that the time-term parameters of the refractor 
vary a small amount in relation to each other. This 
approach usually is presented as a regularization matrix 
of form 
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where   is the Lagrange multiplicator (weight of the 

smoothness). Refrapy then concatenates a zeros 

vector to the    numpy arrays of the 2
nd

 layer. The 
algorithm also forms the regularization matrix in a 
numpy array, concatenating it into the G matrix of the 
refractor layer. This approach yields      ,    
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  ,...,         (smoothed parameters). The      

parameter is usually left unconstrained for reasons 
already mentioned. From this point forward, the 
ordinary least squares (7) can be used to compute an 
unique constrained solution for the  ⃗⃗  vector.  

By changing the value of   in (8), the algorithm 

computes and stores different unique constrained 
solution - due the different weight applied - resulting in 
different residual values for each solution found, which 
are also stored in the memory in a way that the 
program can select the solution related to the lowest 
residual found to represent the final velocity model by 
computing (3). The ideal and applied approach is to let 

the   value float freely so that a range of solutions are 

created and residuals values can be compared. It is 
presented by Meju (1994) that, for a significant range 

of  , the solution related to the least residual value 

might not always match the parameters of the inverse 
problem given a solution calculated with a constrained 
a priori information (the most appropriate solution), but 
is the best possible estimative by the use of this 
technique one could find to solve a non-unique 
overdetermined linear inversion problem with lack of a 
priori data, which ignores the effects of possible 
inclinations of the refracting boundary and other 
structural anomalies.  

For the results, a synthetic model and seismic sections 
were created with the Seismic Unix package, and a 
sample survey was executed in the Campus of the 
University of Brasília. The parameters used to create 
the synthetic model were: thickness of the first layer = 
5 m, v1 = 300 m/s, v2 = 2100 m/s, 24 channels with a 
2 meters spacing from one another and 5 sources 
locations along the whole profile. For the field 
acquisition, the impact of a sledgehammer as an 
energy source was used. The seismic energy was 
registered by high frequency geophones distributed in 
a linear profile with a 2 m spacing from one another. 
To test the program, all the processed data and the 
respective results were compared with the ones 
obtained with the trial version of the Geometric’s 
Seisimager/2D commercial program, an often used 
software in seismic data processing all around the 
world. 

Results 

 A comparison between the developed and the 
commercial phase picking programs can be visualized 
for real data in Figures 2 and 3. The Sispick program 
presents a simple and very similar processing routine 
when compared to the commercial reference software 
(Pickwin).  
 

 
 Figure 2 –First breaks picking on a SEG2 seismogram 

made with the Pickwin program from Seisimager/2D. 

 

 
 Figure 3 – First breaks picking on the same SEG2 

seismogram made with the Sispick program from 
Refrapy. 

Real data 

The inverse method to define the solution vector for the 
speed and depth parameters of the refractor layer is 
performed in the Sisref module, which creates an easily 
interpreted velocity model once the travel-time curves 
are created with the Sispick program. Figures 4 and 5 
present the interpretation of travel-time curves from the 
real data set with Sisref (Refrapy) and Plotrefa 
(Seisimager/2D). Both velocity models created at the 
end can be visualized in Figures 6 and 7. 

An average difference of 1.23 m between the calculated 
thickness of the first layer from both results was found 
(Fig. 8). The Sisref program returned an average 
thickness of 6.58 m for layer one, while Plotrefa 
returned 7.81 m. The Refrapy program calculated v1 = 
338 m/s and v2 = 2009 m/s. The commercial 
application returned the exact same result for v2, but a 
value of 353 m/s for v1, a 4.25% error, which directly 
affects the difference found in the thickness of the first 
layer. 

 

 Figure 4 – Interpreted time-travel curves of the simple 
field survey in UnB (Plotrefa – Seisimager/2D). 
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 Figure 5 – Interpreted time-travel curves of the simple 
field survey in UnB (Sisref - Refrapy). 

 

 
 Figure 6 – Calculated velocity model created from 

interpreted time-travel curves in Fig. 4 (Plotrefa – 
Seisimager/2D).V1 = 353 m/s and V2 = 2009 m/s. 

 

 
Figure 7 – Calculated velocity model created from 

interpreted time-travel curves in Fig. 5 (Sisref – 
Refrapy).V1 = 338 m/s and V2 = 2009 m/s. 

 

 Figure 8 – Comparison between the thickness of the 
first layer from both velocity models in Fig. 6 and 7. 

 

Synthetic data 

Figure 9 presents the synthetic geological model of two 
parallel plane layers in depth generated by the Seismic 
Unix package (Cohen et al., 2013). Figure 10 shows the 
first arrivals picking in one of the 5 synthetically 
generated seismograms. All created seismograms were 
originally in “.su” format and were converted to SEGY 
by the Siscon module. The commercial picking program 
couldn’t open neither SU nor SEGY waveform files. 

 

 Figure 9 – Synthetic geological model of two parallel 

plane layers in depth generated by Seismic Unix. 

 

 Figure 10 – First breaks picking in the Sispick program 
(Refrapy) on a SEGY synthetic seismogram created by 

Seismic Unix from model in Fig 9. 

Figures 11 and 12 present the interpretation of travel-
time curves from the synthetic data set with Sisref 
(Refrapy) and Plotrefa (Seisimager/2D). Both velocity 
models created at the end can be visualized in Figures 
13 and 14. 

The Refrapy program presented an average thickness 
of 4.7 m, yielding a 0.3 m difference when compared to 
the 5 m thickness of the original synthetic model (error 
of 6%). The commercial program returned an average 
thickness of 5.6 m, a 0.6 m difference  when compared 
to the same synthetic model (error of 10.71%) (Fig. 15). 
Sisref (Refrapy) calculated v1 = 317 m/s (error of 5.37% 
when compared to the original 300 m/s of the synthetic 
model) and v2 = 1822 m/s (error of 13.24% when 
compared to the original 2100 m/s). Plotrefa 
(Seisimager/2D) returned v1 = 310 m/s (error of 3.23%) 
and v2 = 1820 m/s (error of 13.34%). 
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Figure 11 – Interpreted time-travel curves of the 
synthetic data (Plotrefa – Seisimager/2D). 

 

Figure 12 – Interpreted time-travel curves of the 
synthetic data (Sisref – Refrapy). 

 

 
 Figure 13 – Calculated velocity model created from 

interpreted time-travel curves in Fig. 11 (Plotrefa – 
Seisimager/2D).V1 = 310 m/s and V2 = 1820 m/s. 

 

 
Figure 14 – Calculated velocity model created from 

interpreted time-travel curves in Fig. 12 (Sisref – 
Refrapy).V1 = 317 m/s and V2 = 1822 m/s. 

 

 
Figure 15 – Comparison between the thickness of the 

first layer from the syntethic model and the velocity 
models from Fig. 13 and 14. 

Conclusions 

The libraries used in the development of the free 
package showed good efficiency, streamlining data 
processing routines, optimizing flow control structures 
and allowing several approaches to the algorithm 
development. The commercial package presented 
some tools and interpretation methods not yet included 
in the free package, although Refrapy presented some 
useful functions not yet present in the last version of the 
paid software. 

The results generated by all the Refrapy programs were 
considerably compatible with the results of the 
commercial package used as reference, both for real 
and synthetic data. The first breaks picking and trace 
processing program from Refrapy (Sispick) showed 
great efficiency, managing to open SEG2 and SEGY 
waveform archives and creating files of travel-time 
curves that could be opened in both of the intepretation 
softwares used in this work (Sisref from Refrapy and 
Plotrefa from Seisimager/2D). 

For the real data processing, the error values found 
while comparing both interpratation softwares when 
appliying the time-term analysis method were not 
significant considering the dimensions of the layer, 
beeing in an acceptable range to characterize the 
subsurface in terms of seismic velocity and depth. 
Considering the processing of the synthetic data, both 
interpratation programs compared in this work 
presented a practically identical margin of error for the 
calculated velocities. However, the Sisref (Refrapy) 
program showed greater coherence regarding the 
thickness of the first layer of the original synthetic 
model. 

The small differences between the calculated 
parameters between ours and the commercial software 
is one of the goals for future research on the inversion 
algorithm, along with the implementation of a third layer 
analysis. 

Acknowledgments 

ProIC – Programa de Iniciação Científica da 
Universidade de Brasília, for the research funding 
during the preliminary development of this work. 



6 
 
Seismological Observatory of University of Brasília, for 
providing the hardware used to create the synthethic 
data and for providing the facilities during some periods 
of the development of the algorithms. 

Geosciences Institute of University of Brasília, for 
providing the equipment for the field acquisition survey 
used in this work. 

References 

BEYREUTHER, M., R. BARSCH, L. KRISCHER, T. 
MEGIES, Y. BEHR, J. WASSERMANN. ObsPy: A 
Python toolbox for seismology, 2010. 

COHEN, J. K.; STOCKWELL, J. J. W. CWP/SU: 
Seismic Un*x Release 43R5: an open-source software 
package for seismic research and processing. Colorado 
School of Mines, 2013. 

HATTON, L.; WORTHINGTON, M. H. L.; MAKIN, J. 
Seismic Data Processing: Theory and Practice. 
Blackwell Scientific Publications, pp.139-163, 1986. 

HUNTER, J., D. Matplotlib: A 2D graphics environment. 
Computing in Science and Engineering 3, 9, 90-95, 
2007. 

JONES, E., OLIPHANT, T., PETERSON, P. SciPy: 
open source scientific tools for Python, 2001. 

MEJU, M., A. Geophysical data analysis: understanding 
inverse problem theory and practice, chapter 4-5, 1994. 

MENKE, W., Geophysical Data Analysis: Discrete 
Inverse Theory, Academic Press, Inc., New York, 1984. 

SCHEIDEGGER, A., E., WILLMORE, P., L. The use of 
a least squares method for theinterpretation of data 
from seismic surveys. Geophysics, vol. 22, issue 1, pp 
9-22, 1957. 

SMITH, T. J.; STEINHART, J. S.; ALDRICH, L. T. Lake 
Superior Crustal Structure. Journal of Geophysical 
Research. Vol. 71, No. 4, pp 1141-1172, 1966. 

WALT, S., V., D., COLBERT, S., C., VAROQUAUX, G. 
The NumPy array: a structure for efficient numerical 
computation.Computing in Science and Engineering, 
13, 22-30, 2011. 

WILLMORE, P. L. Comment on How Necessary are 
large-Scale Refraction Experiments?. Geophys. J. R. 
Astorn. Soc., 18:227-230, 1969. 

WILLMORE, P., L., BANCROFT, A., M. The time term 
approach to refractionseismology. Geophysical Journal, 
vol. 3, issue 4, pp 419-432, 1960. 


