
1

Preliminary results of Refrapy: an open-source program for seismic refraction data analysis

Victor José Cavalcanti Bezerra Guedes¹, Marcelo Peres Rocha¹ and Susanne Taina Ramalho Maciel²
¹Instituto de Geociências, Universidade de Brasília; ²Faculdade UnB Planaltina, Universidade de Brasília

Copyright 2019, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation during the 16th International
Congress of the Brazilian Geophysical Society held in Rio de Janeiro,
Brazil, 19-22 August 2019.

Contents of this paper were reviewed by the Technical Committee of
the 16th International Congress of the Brazilian Geophysical Society
and do not necessarily represent any position of the SBGf, its officers or
members. Electronic reproduction or storage of any part of this paper
for commercial purposes without the written consent of the Brazilian
Geophysical Society is prohibited.

__

Abstract

Refrapy is a multiplatform package of open-source
programs developed with Python 3.4 for seismic
refraction data processing. The algorithm presented
allows the processing of seismic sections, picking of
first arrivals of refracted waves and inversion by least
squares method to generate a model of velocities up to
two layers. The objective of the work was to create an
open-source program for refraction data processing.
The program was applied for the processing of
synthetic and real data. A well established seismic
data processing software was used as reference to
compare the calculated velocity models. The results
presented by our open-source program were
compatible with the results of the commercial package
used as reference, both for real and synthetic data
analysis.

Introduction

Geophysical data processing often requires the use of
computer programs due to the large number of
samples and mathematical routines that need to be
applied. The purchase and maintenance of licenses of
commercial programs generate huge investments for
research institutions, such as universities. Also, many
software packages are sold with several modules that
are often not used, configuring a waste of resources.

Most programs that are used on geophysical data
processing come from international companies. The
development of programs for geophysical applications
in Brazil is limited and usually not available to the
general community. This project aims to develop
programs for refraction seismic data processing that
obtain results compatible with commercial software.
Validation of the results produced by the software is
made by a set of inversion calculations on synthetic
and real field data.

The Refrapy package (Fig. 1), developed here, is an
open-source software with a graphical interface for
reading, processing, picking first breaks on SEG2 and
SEGY seismic sections and computing a time-terms
inversion to create a velocity model of the subsurface
up to two layers. All code is written in Python. The

libraries Numpy (Walt et al., 2011), Scipy (Jones et al.,
2001), Matplotlib (Hunter, 2007) and Obspy
(Beyreuther et al., 2010) are required prior to using
Refrapy. The graphic interface is based on the Tkinter
module, which already comes with Python installation
on Windows and needs to be installed separately like
the other dependencies on Unix based systems. Full
source code and documentation can be obtained
under the terms of the Gnu Public License (version 3
or later) from https://github.com/viictorjs/Refrapy.

 Figure 1 – Launcher interface of the Refrapy package.

Theory and Method

 The program was written in Python 3, making use of
some external libraries. Reading of SEG2 and SEGY
waveform files is achieved by the reading algorithm of
the Obspy framework. The plot of the read seismic
sections and all other plots of the software, including
amplitudes shading, relies on the extense plot functions
of Matplotlib. All mathematical operations involved on
the processing of the seismic traces, such as
normalization of traces, apply/removal of gain on
amplitudes, frequency filters and the inversion itself use
the Numpy arrays architecture. The Tkinter GUI is
designed to simplify the use of the program, also
providing interactive tools along with Matplotlib in a way
that it is possible for users to click on seismograms to
pick first arrival times, preview live travel-time curves,
draw apparent velocity lines and identify layers in travel-
time curves.

 The Sisref program is the interpretation module, which
is based on the time-terms analysis suggested by
Scheidegger & Willmore (1957) and Willmore &
Bancroft (1960), where a linear system is assembled
from the direct and refracted wave travel time vectors.
The model parameters were the velocities of each
layer and the thicknesses below each geophones. The
inversion process used relies on a least squares
approach, with a regularization term based on a

https://github.com/viictorjs/Refrapy

2

smoothness matrix included in the objective function,
to stabilize the problem (Meju, 1994).

The time-term approach has been widely applied for
decades all around the world to interpret the geometry
of irregular refractors on shallow seismic refraction
surveys. Scheidegger and Willmore (1957) suggest
that the travel time of a refracted wave is directly
affected by delay times, or time-terms. Given
sufficiently dense coverage, it is possible to determine
the two-dimensional distribution of propagation velocity
for the materials immediately below the boundary, and
all of the delay times which describe the transmission
of the waves through the upper layer. A conventional
time-term solution assumes that the material below the
boundary has a uniform propagation velocity, and that
the delay time for any given survey point is the same
for all the ray paths which begin and end at that point.
When applying the time-term method, one is likely to
start without prior knowledge of the structure, and
must, therefore, make a trial solution which ignores the
effects of possible inclinations of the refracting
boundary and other structural anomalies. Even the
identification of onsets can be in doubt until trial values
of time-terms are available for insertion on time-
distance plots (Willmore, 1969). As detailed by
Willmore & Bancroft (1960), the use of the least
squares approach might be applied to solve the
inverse problem of the time-terms linear equations.

The problem is to determine the constants in systems
of equations for direct (1) and refracted (2) arrivals, of
the types

 (1)

 (2)

where and

 are the delay times or time-terms (not

present in the direct waves equations) of the i
th

shotpoint and j
th

 receiver position, is the distance

between the i
th

 shot point and the j
th

 receiver, is the

time of the wave propagation from the i
th

 source
position until the j

th
 receiver, is the velocity of

propagation of the direct wave at the surface and is

the seismic velocity of a refracted wave in the k
th

underlying marker layer (Scheidegger & Willmore,
1957).

The thickness of a k
th

 layer below the j
th
 receiver ()

can be calculated as a function of the mean velocity
above the refractor (), the velocity in the k

th
 layer

() and the time-term of the j
th
 receiver (

)

(Willmore & Bancroft, 1960; Smith et al., 1966),
yielding the relation

 ̅

√
 ̅

 (3)

Assuming that m receivers observe waves from a total
of n sources, up to nm equations of forms (1) and (2)
might be obtained. Apart from v, the problem contains

n+m unknowns. The search for physical parameters
that generate a theoretical model as close as possible
to the actual geological model in situations such as this
is known as the inverse problem (Menke, 1984).

Rewriting these linear systems into a stochastic
expression, we get

 ⃗ ⃗⃗⃗ (4)

where is a vector of travel times, G is a coeficiente

matrix and ⃗⃗ is the unknowns parameters vector.
Rewriting (1) and (2) into the (4) matrix form, we get

[] [

] [

] (5) [] [

] [

] (6)

for i = 1,2,3,...,,m and j = 1,2,3,...,n. Once and G are
defined, it’s possible to calculate a solution for the ⃗⃗
vector using an ordinary least squares approach
(Willmore & Bancroft (1960); Menke, 1984), of form

 ⃗⃗⃗ ⃗ (7)

 Once the first arrival times of each opened seismic
section is picked on the software, the interpretation of
the travel-time curves needs to be done. At this point,
the user should identify, by clicking, if a specific arrival
time represents layer 1 (direct wave with a v1 velocity)
or layer 2 (refracted wave with v2 > v1). All clicked
arrival times are then included in a specific numpy array

object for each existing layer (vectors). After all layers
are identified by the user, the algorithm builds a G
matrix for all existing layer (a n dimensional numpy
array object), technically being ready to compute the
inversion described in (7) to estimate m (if the layer
selections can be invertible).

 The direct solution calculated by (7) solves , for the

direct wave problem, and , for the refracted layers,

due to the velocity parameter usually being a well
resolved unknown (Hatton et al., 1986; Meju, 1994), but
might not yield the best possible time-terms for the real
model of the surface refractors (6), as result of the
geological formation of the survey area or even an

unstable inversion.

 Inversion problems in geophysics often deal with
overdetermined systems of equations, where an
undetermined number of solutions are possible due to a
high amount of data (Menke, 1984; Meju, 1994). A priori
information of at least one of the unknowns is the best
possible way to constraint the linear system into
computing a unique solution for the problem (Hatton et
al., 1986). When a priori information is not available, the

best approach one could hope for to solve the non-
uniqueness of the inversion is to add smoothness
constraints in the system of equations (i.e. adding
smoothness relations between the unknown
parameters) (Meju, 1994). An often applied estimative
when creating such smoothness constraints is that the
refractors have small angulations, which, along with a
small spacing between the survey receivers, may
suggest that the time-term parameters of the refractor
vary a small amount in relation to each other. This
approach usually is presented as a regularization matrix
of form

[

] [

] [

] (8)

where is the Lagrange multiplicator (weight of the

smoothness). Refrapy then concatenates a zeros

vector to the numpy arrays of the 2
nd

 layer. The
algorithm also forms the regularization matrix in a
numpy array, concatenating it into the G matrix of the
refractor layer. This approach yields ,

3

 ,..., (smoothed parameters). The

parameter is usually left unconstrained for reasons
already mentioned. From this point forward, the
ordinary least squares (7) can be used to compute an
unique constrained solution for the ⃗⃗ vector.

By changing the value of in (8), the algorithm

computes and stores different unique constrained
solution - due the different weight applied - resulting in
different residual values for each solution found, which
are also stored in the memory in a way that the
program can select the solution related to the lowest
residual found to represent the final velocity model by
computing (3). The ideal and applied approach is to let

the value float freely so that a range of solutions are

created and residuals values can be compared. It is
presented by Meju (1994) that, for a significant range

of , the solution related to the least residual value

might not always match the parameters of the inverse
problem given a solution calculated with a constrained
a priori information (the most appropriate solution), but
is the best possible estimative by the use of this
technique one could find to solve a non-unique
overdetermined linear inversion problem with lack of a
priori data, which ignores the effects of possible
inclinations of the refracting boundary and other
structural anomalies.

For the results, a synthetic model and seismic sections
were created with the Seismic Unix package, and a
sample survey was executed in the Campus of the
University of Brasília. The parameters used to create
the synthetic model were: thickness of the first layer =
5 m, v1 = 300 m/s, v2 = 2100 m/s, 24 channels with a
2 meters spacing from one another and 5 sources
locations along the whole profile. For the field
acquisition, the impact of a sledgehammer as an
energy source was used. The seismic energy was
registered by high frequency geophones distributed in
a linear profile with a 2 m spacing from one another.
To test the program, all the processed data and the
respective results were compared with the ones
obtained with the trial version of the Geometric’s
Seisimager/2D commercial program, an often used
software in seismic data processing all around the
world.

Results

 A comparison between the developed and the
commercial phase picking programs can be visualized
for real data in Figures 2 and 3. The Sispick program
presents a simple and very similar processing routine
when compared to the commercial reference software
(Pickwin).

 Figure 2 –First breaks picking on a SEG2 seismogram

made with the Pickwin program from Seisimager/2D.

 Figure 3 – First breaks picking on the same SEG2

seismogram made with the Sispick program from
Refrapy.

Real data

The inverse method to define the solution vector for the
speed and depth parameters of the refractor layer is
performed in the Sisref module, which creates an easily
interpreted velocity model once the travel-time curves
are created with the Sispick program. Figures 4 and 5
present the interpretation of travel-time curves from the
real data set with Sisref (Refrapy) and Plotrefa
(Seisimager/2D). Both velocity models created at the
end can be visualized in Figures 6 and 7.

An average difference of 1.23 m between the calculated
thickness of the first layer from both results was found
(Fig. 8). The Sisref program returned an average
thickness of 6.58 m for layer one, while Plotrefa
returned 7.81 m. The Refrapy program calculated v1 =
338 m/s and v2 = 2009 m/s. The commercial
application returned the exact same result for v2, but a
value of 353 m/s for v1, a 4.25% error, which directly
affects the difference found in the thickness of the first
layer.

 Figure 4 – Interpreted time-travel curves of the simple
field survey in UnB (Plotrefa – Seisimager/2D).

4

 Figure 5 – Interpreted time-travel curves of the simple
field survey in UnB (Sisref - Refrapy).

 Figure 6 – Calculated velocity model created from

interpreted time-travel curves in Fig. 4 (Plotrefa –
Seisimager/2D).V1 = 353 m/s and V2 = 2009 m/s.

Figure 7 – Calculated velocity model created from

interpreted time-travel curves in Fig. 5 (Sisref –
Refrapy).V1 = 338 m/s and V2 = 2009 m/s.

 Figure 8 – Comparison between the thickness of the
first layer from both velocity models in Fig. 6 and 7.

Synthetic data

Figure 9 presents the synthetic geological model of two
parallel plane layers in depth generated by the Seismic
Unix package (Cohen et al., 2013). Figure 10 shows the
first arrivals picking in one of the 5 synthetically
generated seismograms. All created seismograms were
originally in “.su” format and were converted to SEGY
by the Siscon module. The commercial picking program
couldn’t open neither SU nor SEGY waveform files.

 Figure 9 – Synthetic geological model of two parallel

plane layers in depth generated by Seismic Unix.

 Figure 10 – First breaks picking in the Sispick program
(Refrapy) on a SEGY synthetic seismogram created by

Seismic Unix from model in Fig 9.

Figures 11 and 12 present the interpretation of travel-
time curves from the synthetic data set with Sisref
(Refrapy) and Plotrefa (Seisimager/2D). Both velocity
models created at the end can be visualized in Figures
13 and 14.

The Refrapy program presented an average thickness
of 4.7 m, yielding a 0.3 m difference when compared to
the 5 m thickness of the original synthetic model (error
of 6%). The commercial program returned an average
thickness of 5.6 m, a 0.6 m difference when compared
to the same synthetic model (error of 10.71%) (Fig. 15).
Sisref (Refrapy) calculated v1 = 317 m/s (error of 5.37%
when compared to the original 300 m/s of the synthetic
model) and v2 = 1822 m/s (error of 13.24% when
compared to the original 2100 m/s). Plotrefa
(Seisimager/2D) returned v1 = 310 m/s (error of 3.23%)
and v2 = 1820 m/s (error of 13.34%).

5

Figure 11 – Interpreted time-travel curves of the
synthetic data (Plotrefa – Seisimager/2D).

Figure 12 – Interpreted time-travel curves of the
synthetic data (Sisref – Refrapy).

 Figure 13 – Calculated velocity model created from

interpreted time-travel curves in Fig. 11 (Plotrefa –
Seisimager/2D).V1 = 310 m/s and V2 = 1820 m/s.

Figure 14 – Calculated velocity model created from

interpreted time-travel curves in Fig. 12 (Sisref –
Refrapy).V1 = 317 m/s and V2 = 1822 m/s.

Figure 15 – Comparison between the thickness of the

first layer from the syntethic model and the velocity
models from Fig. 13 and 14.

Conclusions

The libraries used in the development of the free
package showed good efficiency, streamlining data
processing routines, optimizing flow control structures
and allowing several approaches to the algorithm
development. The commercial package presented
some tools and interpretation methods not yet included
in the free package, although Refrapy presented some
useful functions not yet present in the last version of the
paid software.

The results generated by all the Refrapy programs were
considerably compatible with the results of the
commercial package used as reference, both for real
and synthetic data. The first breaks picking and trace
processing program from Refrapy (Sispick) showed
great efficiency, managing to open SEG2 and SEGY
waveform archives and creating files of travel-time
curves that could be opened in both of the intepretation
softwares used in this work (Sisref from Refrapy and
Plotrefa from Seisimager/2D).

For the real data processing, the error values found
while comparing both interpratation softwares when
appliying the time-term analysis method were not
significant considering the dimensions of the layer,
beeing in an acceptable range to characterize the
subsurface in terms of seismic velocity and depth.
Considering the processing of the synthetic data, both
interpratation programs compared in this work
presented a practically identical margin of error for the
calculated velocities. However, the Sisref (Refrapy)
program showed greater coherence regarding the
thickness of the first layer of the original synthetic
model.

The small differences between the calculated
parameters between ours and the commercial software
is one of the goals for future research on the inversion
algorithm, along with the implementation of a third layer
analysis.

Acknowledgments

ProIC – Programa de Iniciação Científica da
Universidade de Brasília, for the research funding
during the preliminary development of this work.

6

Seismological Observatory of University of Brasília, for
providing the hardware used to create the synthethic
data and for providing the facilities during some periods
of the development of the algorithms.

Geosciences Institute of University of Brasília, for
providing the equipment for the field acquisition survey
used in this work.

References

BEYREUTHER, M., R. BARSCH, L. KRISCHER, T.
MEGIES, Y. BEHR, J. WASSERMANN. ObsPy: A
Python toolbox for seismology, 2010.

COHEN, J. K.; STOCKWELL, J. J. W. CWP/SU:
Seismic Un*x Release 43R5: an open-source software
package for seismic research and processing. Colorado
School of Mines, 2013.

HATTON, L.; WORTHINGTON, M. H. L.; MAKIN, J.
Seismic Data Processing: Theory and Practice.
Blackwell Scientific Publications, pp.139-163, 1986.

HUNTER, J., D. Matplotlib: A 2D graphics environment.
Computing in Science and Engineering 3, 9, 90-95,
2007.

JONES, E., OLIPHANT, T., PETERSON, P. SciPy:
open source scientific tools for Python, 2001.

MEJU, M., A. Geophysical data analysis: understanding
inverse problem theory and practice, chapter 4-5, 1994.

MENKE, W., Geophysical Data Analysis: Discrete
Inverse Theory, Academic Press, Inc., New York, 1984.

SCHEIDEGGER, A., E., WILLMORE, P., L. The use of
a least squares method for theinterpretation of data
from seismic surveys. Geophysics, vol. 22, issue 1, pp
9-22, 1957.

SMITH, T. J.; STEINHART, J. S.; ALDRICH, L. T. Lake
Superior Crustal Structure. Journal of Geophysical
Research. Vol. 71, No. 4, pp 1141-1172, 1966.

WALT, S., V., D., COLBERT, S., C., VAROQUAUX, G.
The NumPy array: a structure for efficient numerical
computation.Computing in Science and Engineering,
13, 22-30, 2011.

WILLMORE, P. L. Comment on How Necessary are
large-Scale Refraction Experiments?. Geophys. J. R.
Astorn. Soc., 18:227-230, 1969.

WILLMORE, P., L., BANCROFT, A., M. The time term
approach to refractionseismology. Geophysical Journal,
vol. 3, issue 4, pp 419-432, 1960.

