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Abstract

Least-squares reverse time migration (LSRTM) aims to
improve the quality of seismic images by fitting the
reflection wavefield with a linearized inverse scattering
model, using conjugate gradient (CG) iterations. Due
its high computational cost, it is important to accelerate
the convergence rate in LSRTM. With this objective
we investigate a preconditioner for LSRTM inspired by
the asymptotic inverse scattering expression for RTM.
The proposed preconditioner can significantly reduce in
the number of CG iterations in LSRTM than the more
conventional laplacian preconditioner.

Introduction

The least-squares migration method (LSM) is recognized
as an important process for estimating earth’s reflectivity,
then producing images with a better quality than those
produced with conventional migration (Zhang et al., 2014).
The LSM theory was first derived by Nemeth et al.
(1999) for application in Kirchhoff migration, then, with
the development of computational power, applications of
LSM to reverse-time migration were developed. Nowadays,
reverse-time migration is the state-of-the-art imaging
method for complex subsurface structures, and when it
is applied as an inverse least-squares inverse problem,
it can reduce not only the acquisition footprint but also
the artifacts in the RTM image, resulting in an image with
enhanced resolution (Dai and Schuster, 2013).

In the least-squares inversion, model updates are
calculated through minimizing the objective function.
Therefore, a mandatory intermediary step in the LSM
method is the evaluation of the gradient of the objective
function. However, the gradient formed by cross-correlation
suffers from geometrical spreading effects, which results
in poor amplitudes for deep reflectors and a slow
convergence rate (Huang et al., 2016). Xu and Sacchi
(2017) addressed this issue applying a preconditioning
to the objective function which compensated for the
source wavefield energy, they obtained an acceleration
in convergence and a better spacial resolution. Huang
et al. (2016) used an approximation of the Hessian matrix
as a preconditioning operator to compensate geometrical
spreading effects and improve the performance of the

least-squares inversion.

In this study, we analyze the effects which different
preconditioning might have on the least-squares inversion
results. First, we analyzed the influence of using the
conventional Laplacian operator as a preconditioning, for
it is well known its property of enhancing high-frequency
signal, while attenuating low-frequency noise. Secondly,
we studied an illumination compensate preconditioner
which was inspired on the inverse asymptotic of the Born
modeling derived by Op’t Root et al. (2012).

Method

Least-squares migration assumes one can estimate
the subsurface reflectivity from the recorded reflected
wavefield considering only single scattering in an otherwise
smooth background media. For the acoustic wave
equation,

1
c(x)2

∂ 2 p(x, t;xs)

∂ t2 −∇
2 p(x, t;xs) = s(t;xs) , (1)

the single scattering, or Born approximation, assumes
that the velocity model, c(x), can be separated into a
smooth background component, c0(x), and a perturbation
component, δc(x), i.e.,

c(x) = c0(x)+δc(x) . (2)

Correspondingly, the pressure field, p(x, t;xs), can be
decomposed as

p(x, t;xs) = p0 (x, t;xs)+δ p(x, t;xs) , (3)

in which p0 (x, t;xs) is the wavefield propagating in
background velocity model, which therefore obeys

1
c0(x)2

∂ 2 p0 (x, t;xs)

∂ t2 −∇
2 p0 (x, t;xs) = s(t;xs) . (4)

for a source pulse s(t;xs) injected at position xs.

Substituting the expressions 2 and 3 in equation 1, and
keeping only first-order terms, we obtain the linearized
wave equation:

1
co(x)2

∂ 2δ p(x, t;xs)

∂ t2 −∇
2
δ p(x, t;xs) =

r(x)
c2

o(x)
∂ 2 po (x, t;xs)

∂ t2 ,

(5)
where r(x) = 2δc(x)/co(x) represents the reflectivity.

Formally, the finite difference solution of equation (5) can
be cast in matrix notation as

Lm = d , (6)
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where L stands for the Born modeling operator, m is the
reflectivity model and d represents the single scattered
wavefield δ p(x, t;xs), or Born data, used to fit the recorded
reflection wavefield.

The LSRTM consists of solving the linearized least-square
problem

argmin
m

∥∥∥Lm−dobs
∥∥∥2

2
(7)

where dobs is the observed seismic reflection data. This
problem is solved using conjugate gradient (CG) iterations.
In order to implement these iteration we need the gradient
objective function (7), which corresponds to the migration
operation (Claerbout, 1992). Using the adjoint-state
method (Plessix, 2006) we can compute the gradient at
each CG iteration by first solving the adjoint equation
backward in time,

1
co(x)2

∂ 2q(x, t;xs)

∂ t2 −∇
2q(x, t;xs) = e

(
xg, t;xs

)
, (8)

where q(x, t;xs) is the adjoint wavefield and e
(
xg, t;xs

)
represents the misfit at each iteration. Having computed
the adjoint wavefield the gradient of the objective function
can be computed

LT e = ∑
xs

∑
t

∇
2 p0 (x, t;xs) ·q(x, t;xs) , (9)

Preconditioning

The convergence of conjugate gradient method may suffer
from acquisition footprints and low wavenumber artifacts
in the gradient of the objective function. In order to
improve the conditioning of linear iteration we can use
preconditioning by model reparameterization (Claerbout
and Fomel, 2008),

m = Pa (10)

where P represents a preconditioning operator and a the
model reparameterization. Ideally, operator P should be
designed to filter the low wavenumbers artifacts, accelerate
the convergence rate of CG iterations and improve the
quality of the reflectivity model. In order to filter low
wavenumber artifacts, operator P can not be positive
and in order to warrant CG convergence we need to
add regularization term to a, resulting in the following
regularized least-squares linear system:

(
LP
µI

)
a =

(
d
0

)
, (11)

where µ is the regularization parameter and I is the identity
matrix.

We investigate the effect of two types of preconditioners in
LSRTM. The first preconditioner is a 2D Laplacian operator,
which has the property of filtering the low wavenumber
components (Guitton et al., 2006). In this case, the
equation (10) takes the form

m =
[
∇

2
]

a . (12)

We propose a second preconditioner which was inspired
by the inverse asymptotic of the Born modeling operator

derived by Op’t Root et al. (2012). The operator applies
the Laplacian operator and compensates for the source
illumination. In this case P takes the form:

m =

[
∇2

I

]
a , (13)

where I is the source wavefield illumination.

Numerical Examples

The synthetic data was obtained using a portion of the
Marmousi2 model (Martin et al., 2002). The original
velocity model was modified to be the size of 9km x
3.5km with a 10m grid interval (Figure 1a). The smoothed
background velocity model, co(x), appears in Figure 1b.
In the experiments, 240 shots were evenly distributed
on the surface, the first and last source positions are,
respectively, 3000m and 8975m, and the shot interval was
25m. For each shotgather, the minimal offset was 200m
and maximum offset was 2575m, with 96 receivers spread
evenly with a distance of 25m from one another. The
point source injection and point receiver records were
implemented by using a band limited function, which gives
accurate measurements in arbitrary position of the grid
(Hicks, 2002).

The data were generated using the finite difference method
with a PML boundary condition. As in the LSRTM inversion
we are only interested on the primaries reflection data, the
input data were calculated as the difference of the synthetic
data generated using the true velocity model (Figure 1a)
and the data generated using the smoothed velocity model
(Figure 1b). The total record length is 3.5 s with a 0.004 s
sampling rate.
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Figure 1: (a) True velocity model. (b) Smoothed
background velocity model.
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Based on the true reflectivity model (Figure 2a)
we analyze the numerical experiments results: 1)
conventional RTM with Laplacian filter, 2) LSRTM using
Laplacian preconditioning after 25 iterations, 3) LSRTM
using illumination compensation preconditioning after 25
iterations.

Figure 2b shows the RTM result after applying a Laplacian
filter, it is observed low wavenumber artifacts in the shallow
parts, specifically in the region above 1500m, besides the
relative amplitudes are not well recovered in the deep parts
of the model.

By comparing with RTM image, LSRTM using Laplacian
preconditioning (Figure 2c) suppresses the low
wavenumber artifacts in the shallow region of the
model, enhances the image resolution, and additionally,
it attenuates the relative amplitudes of shallow reflectors,
which is more consistent with the true reflectivity model.
Likewise, LSRTM using illumination compensation
preconditioning (Figure 2d) reduces the low wavenumber
artifacts and improves image resolution, it produces better
balanced amplitudes for deep parts of the model, since
relative amplitudes in this region are increased.

Comparing the two LSRTM results (Figure 2c and 2d),
we clearly note that the two preconditioning yields
different reflectivity amplitudes. The desired effect of
the illumination preconditioning on LSRTM is to preserve
relative amplitudes in the whole model. However, this
was only achieved for deep portions, which is due to the
compensation of source illumination.

In order to evaluate the convergence of LSRTM
experiments, we use the normalized data residual.
The convergence curves for the two preconditioner
operator are shown in Figure 3. We note a
significant difference between the convergence rates. The
illumination compensation preconditioning presents better
convergence, after 25 iterations its data misfit was reduced
to approximately 1.5%. While for Laplacian preconditioning,
after 25 iterations, the misfit was reduced to approximately
55%.

In the above LSRTM experiments we used a regularization
parameter µ = 0.1. Once the use of illumination
preconditioning accelerates the convergence, we also
studied the influence that µ value has on the convergence
rate for this particular preconditioner. Figure 4 depicts
the convergence curves for µ = 0.1 (blue curve), and µ =
0.01 (red curve). It is observed that regularization term
has a significant influence on the convergence rate. The
inversion using µ = 0.1 presents better convergence, as
mentioned, its misfit was reduced to approximately 1.5%.
Whereas for µ = 0.01, after 25 iterations, the misfit was
reduced to approximately 40%.

Conclusions

In this work we investigated the effect of the preconditioning
on the LSRTM. We studied a preconditioner operator
inspired by the asymptotic inverse scattering and the
conventional Laplacian preconditioner. We also compare
the LSRTM results with conventional RTM image.

The experiments demonstrated that, for both
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Figure 2: (a) True reflectivity model for the Marmousi2
model, (b) RTM result using Laplacian filtering, (c)
LSRTM result with Laplacian preconditioner after 25
iterations, (d) LSRTM result with illumination compensation
preconditioner after 25 iterations.
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Figure 3: Convergence curves for the LSRTM with
Laplacian preconditioning (black curve) and illumination
compensation preconditioning (blue curve). For these
experiments we used a regularization parameter µ = 0.1.
The data residual were normalized by the initial value.
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Figure 4: Convergence curves for the LSRTM with
illumination compensation preconditioning using different
values of regularization parameters. The blue curve is for
µ = 0.1, and the red curve is for µ = 0.01. The data residual
were normalized by the initial value.

preconditioning, the LSRTM improves the image
quality in comparison with conventional RTM, since it
produced images with better resolution and reduced low
wavenumber artifacts.

The two preconditioning studied do not effectively equalize
the amplitudes when compared with the true reflectivity
model, which indicates that for the proposed preconditioner
the effect of illumination compensation needs to be better
analyzed to further improve the amplitudes in the whole
model.

The illumination compensation preconditioner can
accelerate significantly the convergence rate of LSRTM,
in comparison with the Laplacian preconditioner.
Furthermore, we also observed that the regularization
parameter can influence considerably in the convergence.
The computational cost of an iteration using the two
investigated preconditioning is essentially the same
of a ordinary LSRTM. Nonetheless, the use of the
proposed preconditioner can reduce the number of CG
iterations. Therefore, the cost of LSRTM can be reduced
considerably.

Acknowledgments

The authors would like to thank the CAPES for the student
scholarships.

References

Claerbout, J. F., 1992, Earth soundings analysis:
Processing versus inversion: Blackwell Scientific
Publications London, 6.

Claerbout, J. F., and S. Fomel, 2008, Image estimation
by example: geophysical soundings image construction:
multidimensional autoregression: Citeseer.

Dai, W., and G. T. Schuster, 2013, Plane-wave least-
squares reverse-time migration: Geophysics, 78, S165–
S177.

Guitton, A., B. Kaelin, and B. Biondi, 2006, Least-
squares attenuation of reverse-time-migration artifacts:
Geophysics, 72, S19–S23.

Hicks, G. J., 2002, Arbitrary source and receiver positioning
in finite-difference schemes using kaiser windowed sinc
functions: Geophysics, 67, 156–165.

Huang, Y., R. Nammour, and W. Symes, 2016, Flexibly
preconditioned extended least-squares migration in
shot-record domain: Geophysics, 81, S299–S315.

Martin, G. S., K. J. Marfurt, and S. Larsen, 2002,
Marmousi-2: An updated model for the investigation
of avo in structurally complex areas, in SEG Technical
Program Expanded Abstracts 2002: Society of
Exploration Geophysicists, 1979–1982.

Nemeth, T., C. Wu, and G. T. Schuster, 1999,
Least-squares migration of incomplete reflection data:
Geophysics, 64, 208–221.

Op’t Root, T. J., C. C. Stolk, and V. Maarten, 2012,
Linearized inverse scattering based on seismic reverse
time migration: Journal de mathématiques pures et
appliquées, 98, 211–238.

Plessix, R.-E., 2006, A review of the adjoint-state
method for computing the gradient of a functional
with geophysical applications: Geophysical Journal
International, 167, 495–503.

Xu, L., and M. D. Sacchi, 2017, Preconditioned acoustic
least-squares two-way wave-equation migration with
exact adjoint operator: Geophysics, 83, S1–S13.

Zhang, Y., L. Duan, and Y. Xie, 2014, A stable and practical
implementation of least-squares reverse time migration:
Geophysics, 80, V23–V31.

Sixteenth International Congress of the Brazilian Geophysical Society


