
The acoustic 2-D wave equation in multi-scale transform domains
M. V. C. Henriques�, G. Corso*†, J. E. Freitas*, F. A. Moura*, L. S. Lucena*
� Departamento de Ciências Exatas e Tecnologia da Informação, Universidade Federal Rural do Semi-Árido - UFERSA
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Abstract

The computational cost of full wave inversion FWI
is high. In this context, sparse representations are
an alternative strategy to face this problem. In the
present work we deal with the wave dynamics in a
homogeneous space for a sparse representation. We
present a mathematical framework that transform the
space time FWI wave forms of the wave equation into
a sparse representation. In addition, we work a fast
and efficient dynamical evolution for the coefficients
of the wave forms in this sparse representation. We
successfully tested the evolution of the coefficients in
a homogeneous model.

Introduction

The gas and oil industry is one of leading economical
activities in the world, King (1997). A major challenge
in gas and oil geophysics exploration is to obtain good
images of the subsurface, Virieux and Operto (2009). In
fact, a great effort of science and engineering is to develop
adequate tools of subsurface imaging. In recent years,
the full wave inversion FWI method is successfully being
applied to the seismic image field, Fichtner (2010).

The experimental background of the FWI is the standard
reflection seismic exploration: an explosive source
generates a pulse wave that propagates in the subsurface,
reflect in the geologic layers and is captured in the
geophones of hydrophones Yilmaz (2001). The challenge
of the FWI technique consists in, with help of the physics
laws of wave propagation, to compute the wave forms
that travel in the subsurface. The computational cost
of the FWI is huge, the used memory during the FWI
processing makes this enterprise one of the highest
memory consumption activities of computational industry,
Herrmann et al. (2012).

The concept of sparse representations is used in
mathematics to describe peculiar data transformations,
Stéphane (2009). When is is possible to transform a

massive data set into another data with significant lesser
memory, but keeping the relevant information, we say that
the new compressed data is in a sparse representation.
In other words, the transformation map the initial large
data into a sparse representation. The most common
example of sparse representation is the Fourier transform.
An additional example is the wavelet transformation that
is used to build the jpeg compressed file method. Our
physical mathematical manuscript is inscribed in the
context of wave propagation in sparse representations.

One more word about the FWI method. The FWI
was initially posed in the time domain representation,
Tarantola (1984) because the wave equation is written for
a traveling wave in time and space. A further advance
on the FWI method transform the FWI in the frequency
domain, Sirgue and Pratt (2004), using the usual Fourier
transform of the wave equation. However, a more general
representation of the FWI method, like the wavelet or
curvelet representations, suffers from an explicit matrix
wave propagator. The objective of this work is to explore
wave propagation in space representation for any well
behaved mathematical transformation.

To illustrate our methodology we exemplify our results
using curvelet transformation, Devaney (2012). We hope
that a representation based on tight frames like Curvelets
would be suitable to simulate the wave propagation in
an intuitive way. The curvelets are mathematical objects
that, besides its multi-scale characteristics inherited from
the wavelets, have strong dependence on orientation,
represent. So, they can sparsely represent the anisotropy
of wave patterns. In the reference Candes and Demanet
(2005) it is demonstrated that the solution of a large class
of wave equations are optimally sparse in the curvelet
domain in the case of smooth variations of the coefficients
of the wave equations. However, we believe that the
sparsity remains even when the physical properties of the
medium of propagation vary sharply. This is the case of the
geological medium studied in geophysics.

The seismic explorations is an area that deals with a huge
amount of data. The search for sparse representations is
a challenge in this field. In this manuscript we introduce a
matrix that propagates the wave for a general mathematical
transformation. We believe that our approach should
open a new perspective in the FWI technique. The
rest of the paper is organized as: in section 2 we
present the mathematical framework that deals with wave
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equation, sparse representations and matrix propagation.
In section 3 we exemplify our methodology using curvelet
transformation. Finally in section 4 we conclude the work
and put the results in a broad perspective.

Mathematical Framework

Tight Frames

Frame theory (Duffin and Schaeffer, 1952) seeks to
establish conditions under which a function f in a Hilbert
space H can be perfectly recovered from a family of
vectors {φα}α∈Ω

, with Ω representing a set of discrete
indexes.
Let f be a function with finite energy in a Hilbert space H ,
and let {φα} be a frame that can span the space H . One
call {φα} a tight frame if the inner product of f with all the
elements of the frame keeps the energy finite:

A‖ f (x)‖= ∑
α∈Ω

|〈 f |φα 〉|2 (1)

where A > 0 is a constant, ‖·‖ is a suitable norm for the
Hilbert space, 〈· |· 〉 denotes the inner product and the
discrete indexes α can assume any of the values allowed
in Ω. One could say that {φα} can represent, even if in
an unorthogonal way, i.e., redundantly, any function of the
space H :

f = ∑
α∈Ω

〈 f |φα 〉φα (2)

An advantage of such representation is immediate: let
a family of functions { f} represent a physical signal, for
example, acoustic wave fields. If one finds a frame on
which this family { f} can be sparsely represented, a signal
could be easily compressed with little loss of information as
follows:

f̃ = ∑
α∈Relevant

〈 f |φα 〉φα (3)

by discarding the negligible coefficients according to an
established threshold.

Transforming the wave equation

The homogeneous (without sources) acoustic wave
equation in a medium with constant propagation velocity
v is given by:

v2
∇

2u(xxx, t)−∂
2
t u(xxx, t) = 0 (4)

where ∇2 is the Laplacian, ∂ 2
t is the second time derivative

operator and u is a scalar function that represents the wave
field, Feynman et al. (1965).

Let the operator F be the frame transform that projects this
equation on the tight frame {φ}. Applying F to the wave
equation (4):

F
{

v2
∇

2u(xxx, t)−∂
2
t u(xxx, t)

}
= 0 (5)

If the operator F is linear, we have:

v2F
{

∇
2u(xxx, t)

}
−F

{
∂

2
t u(xxx, t)

}
= 0 (6)

In addition, the ∂ 2
t operator on the tight frame fulfill the

condition:

F
{

∂
2
t u(xxx, t)

}
(α) =

〈
∂

2
t u(xxx, t)

∣∣∣φα (xxx)
〉

=
〈

∂
2
t u
∣∣∣φα

〉
= ∂

2
t 〈u |φα 〉

= ∂
2
t cu(α) (7)

where we label 〈u |φα 〉= cu(α), the coefficient of the field u
for the frame element φα

The Laplacian operator in a tight frame.

Let {φα}α∈Ω
be a tight frame of the Hilbert space H of the

wavefunctions in 2 dimensions:

F
{

∇
2u(xxx, t)

}
(α) =

〈
∇

2u(xxx, t)
∣∣∣φα (xxx)

〉
=
〈

∇
2u
∣∣∣φα

〉
=
∫

∞

−∞

∫
∞

−∞

∇
2u(x,y, t)φα (x,y) dxdy (8)

Taking into account that φα and u are continuous functions,
one can apply the two-dimensional version of the second
Green identity:∫

s

(
φα ∇

2u−u∇
2
φα

)
ds =

∮
c
(φα ∇u−u∇φα ) ·nnn dl (9)

in which c represents the path along the boundary of an
arbitrary surface s, and nnn is the unit normal vector of de
line element dl (Courant and Hilbert, 1989). If one has
a tight frame composed by localized elements φα that
have finite values on a small vicinity and decay rapidly
for long distances, one can take the integration surface
large enough such that, at the boundary of the surface
s, φα (s) = 0 and ∇φα (s) = 0 and, as a consequence, the
second integral equals zero:∫

s

(
φα ∇

2u−u∇
2
φα

)
ds = 0 (10)

One can imagine that the surface covered by the integral
in (10) is so big that the value of the integral is practically
the same as that of the infinite integral in (8), which
approximately justifies:∫

∞

−∞

∫
∞

−∞

(
φα ∇

2u−u∇
2
φα

)
dxdy = 0 (11)

Consequently:∫
∞

−∞

∫
∞

−∞

φα ∇
2u dxdy =

∫
∞

−∞

∫
∞

−∞

u∇
2
φα dxdy (12)〈

∇
2u
∣∣∣φα

〉
=
〈

u
∣∣∣∇2

φα

〉
(13)

F
{

∇
2u
}
(α) =

〈
u
∣∣∣∇2

φα

〉
(14)

Let the frame {φα}α∈Ω
be a complete representation, even

if it is not orthonormal. One can write:

f = ∑
α∈Ω

〈 f |φα 〉φα

= ∑
α∈Ω

c f (α)φα (15)
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for all f ∈H , and where Ω is the set of all α of indexes
of the frame {φα}. As a consequence, the completeness
relation is valid:

∑
α∈Ω

|φα 〉〈φα |= 111 (16)

One can insert the relation (16) in (14):

F
{

∇
2u
}
(α) = 〈u|

(
∑

α ′∈Ω

|φa′〉〈φa′ |
)∣∣∣∇2

φα

〉
= ∑

α ′∈Ω

〈u |φa′ 〉
〈

φa′
∣∣∣∇2

φα

〉
= ∑

α ′∈Ω

cu(α
′)
〈

φa′
∣∣∣∇2

φα

〉
(17)

If we choose our frame to be real-valued (φ(x,y) ∈ R), the
equality

〈
φα

∣∣∇2φα

〉
=
〈
∇2φα |φα

〉
holds, and:

F
{

∇
2u
}
(α) = ∑

α ′∈Ω

cu(α
′)
〈

∇
2
φα

∣∣∣φα ′

〉
(18)

Finally, the homogeneous wave equation expressed by
means of coefficients cu(α) can be written as:

v2
∑

α ′∈Ω

cu(α
′)
〈

∇
2
φα

∣∣∣φα ′

〉
−∂

2
t cu(α) = 0 (19)

Curvelets tight frame

Curvelets are a multiscale system of representation in
which the elements are highly anisotropic at fine scales,
with effective support shaped according to the parabolic
scaling principle, width ≈ length2, at fine scales. The
curvelets have been shown to be optimally sparse in
the representation of propagating wavefields, Candes and
Demanet (2005).

Curvelets are oscillatory and highly localized in space,
decaying rapidly at long distances from their center. These
properties make curvelets suitable as a tight frame in our
work. Each curvelet {φα} at scale a is constructed from a
”mother” curvelet φa by scaling, shifting and rotating.

Discretization of the equation

In order to implement the equation (19) in a computer code
we have to perform an adequate discretization. The time
derivative of the frame coefficients of the wavefield can be
approximated by the finite differences approach:

∂
2
t cu(α)≈

cn+1
u (α)−2cn

u(α)+ cn−1
u (α)

∆t2 (20)

So, equation (19) turns into

v2
∑

α ′∈Ω

cn
u(α
′)
〈

∇
2
φα

∣∣∣φα ′

〉
−
(
cn+1

u (α)−2cn
u(α)+ cn−1

u (α)
)

∆t2 = 0 (21)

Rearranging,

cn+1
u (α) =

− cn−1
u (α)+2cn

u(α)+ v2
∆t2

∑
α ′∈Ω

cn
u(α
′)
〈

∇
2
φα

∣∣∣φα ′

〉
(22)

Numerical Experiment

The numerical experiment that follows illustrate the
mathematical framework developed in the previous section.
Namely, we tested the adequacy of equation (19)
for the time evolution of the coefficients of a sparse
representation. To that end, we implemented on the
discretized version of this relation, equation (22), that is
designed to be implemented in computational algorithms.
As stated before, we employed the curvelet transform as a
study case because of its ability to represent the wavefield
sparsely.

In our numerical simulations we modeled the propagation
of an acoustic wave with a pulse source in a 2D
homogeneous medium. Moreover, we employ a Ricker
wavelet, Ricker (1953), as the source pulse. The curvelets
are labeled, in the frequency domain, by φ j,l,kkk where j and
l are integer indexes that define the scale and orientation,
respectively, and kkk is a integer 2-tuple that defines the two-
dimensional spatial localization; these three parameters
uniquely identify the curvelet as the Fourier transform of
the original curvelets in real space.

Results of our tests are shown in figure 1. Figure 1(a)
shows a snapshot of the modeled waveform using the
standard wave equation (4). In figure 1(b) we depict the
same waveform using the dynamical temporal evolution
based on the curvelet coefficient evolution, equation (22).
To compare both approaches we compute the differences
between them and plotted the result in figure 1(c).

To better showcase the advantage of this curvelet-based
time evolution algorithm we show in figure 2 some
examples of the projection of the Laplacian of a curvelet
in the base ∇2φn on another curvelet φm. We chose
elements on the scale j = 3 and orientations l, labeled φ j,l ,
to project on the curvelet with the same scale and close
orientation. These projections

〈
∇2φ j,l

∣∣φ j′,l′
〉

are the central
element of equations (19) or (22) that describe the time
dynamical evolution of the coefficient of φ j,l of the wavefield
represented in the curvelet tight frame.

Figure 2 shows, as an example, the numerical results of
the inner product

〈
∇2φ3,l

∣∣φ3,4
〉
. In fact, the projection of the

Laplacians orientations close to l = 4 concentrate almost all
the energy while the other coefficients carry only a small
amount of energy. As one can see, (∇2φ3,3, ∇2φ3,4 and
∇2φ3,5) are the elements that concentrate most of energy
in the projection. We remind that equation (22) represents
a sum over all ki and k j elements, but the panels in figure
2 make it evident by the concentration of energy over a
few projections

〈
∇2φi, j

∣∣φ3,4
〉

that to calculate the evolution
of the coefficient of φ3,4 it would be enough to compute
just a few projections on coefficients with neighboring wave
vectors and neglect the others.

Final Remarks

In this manuscript we developed a mathematical
formulation for the dynamical evolution of a propagating
acoustic wave that is adequate for sparse representations.
In fact, it is adequate for any linear transformation that
fulfill proper convergence conditions. This framework is
specially fitted for the FWI methodology as it is well suited
to promote savings in memory and processing time, since
the wavefields can be propagated directly in a compacted
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(a) (b) (c)

Figure 1: Comparison between two wavefields: the first,
shown in (a), is obtained using the standard numerical
solution process via finite differences of the wave equation
(4). In the panel (b) it is shown the result of the dynamical
evolution using the propagation of the curvelet coefficients
as in equation (22). In (c) it is plotted the difference
between the two figures.

Figure 2: Inner product between the curvelet, φ3,4, and
neighbour curvelets Laplacian at the same scale 3, ∇2φ3, j,
with adjacent orientations.

form.

The computational implementation of the mathematical
principles was demonstrated to be successful in two ways.
First, we confirmed that a curvelet-based representation
is indeed a sparse representation for wave forms over
time, only a few coefficients are necessary to describe
typical wave forms; this fact is frequently referenced in
the literature, Candes et al. (2006). The second, and
more important point, is that the time evolution of the wave
forms is well described by our algorithms. The dynamical
evolution of the curvelet coefficients is quite similar to the
dynamical evolution of the wave equation itself.

We remark that this paper is a proof of concept for a
work in progress. The numerical demonstration in this
paper was carried out for a homogeneous medium as a
test case. At this moment we are working to account
for discontinuities and inhomogeneity in the medium in
the mathematical model to make the methodology more
realistic to the FWI application, while still preserving the
advantageous sparsity of representation.

The number of possible curvelets to be used as mother
curvelets in the creation of a base are endless, so we
direct our efforts in creating a specifc curvelet tight frame
that allows us to neglect most of the terms involving the
laplacian projections of the base elements. Such a family
of curvelets would allow us to calculate the propagation
in an already compacted form, with interesting savings in
memory used for storage of the wavefields and processing
time in modeling the time evolution.

To summarize the work: FWI imaging is computationally
costly, sparse representations can save memory and
processing time, we developed mathematical tools that
skip the usual wave equation space time evolution
by working directly with the coefficients of a sparse
representation.
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