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Abstract

The correspondence principle permits the modeling
of marine controlled-source electromagnetic (CSEM)
data solving Maxwell’s equations numerically using
time-domain finite-difference in a dielectric media.
Attractive features of this method include: I) modeling
multi-frequency data in a single finite-difference
simulation, II) low-memory demand when compared to
solving Maxwell’s equation in a conductive media in
3D, there is no need to solve a large linear system
for each frequency; III) it can be implemented very
efficiently in distributed nodes with GPU accelerators.
We investigate the application of the correspondence
principle to the inversion of CSEM data. We start
revising the adjoint state method to establish the
relation between the adjoint fields in the conductive
medium and the fictitious dielectric medium derived
from the correspondence principle. Then, we derive
the expression for the gradient of least-squares
objective function from the adjoint-state solution in
the fictitious domain. This derivation, although
straightforward shows that the computation of adjoint-
fields in the fictitious dielectric medium presents
subtle differences relative to the forward modeling of
EM fields using the correspondence principle. We
validate this approach through the inversion of a
CSEM synthetic data set, computed for a simple
reservoir model in 3D. Our numerical experiments also
evaluate the effects of regularization, using model
reparameterization, on the convergence and stability
of the iterations of the optimization algorithm.

Introduction

The electromagnetic methods are widely investigated to
aid in hydrocarbon exploration. Mainly for the exploration
of frontier regions, where the structural complexity
and heterogeneous overburden might present significant
challenges to seismic imaging and inversion (Meju et al.,
2018). This interest sustains the research for the
development of effective and efficient algorithms for the
inversion of CSEM data (Hansen et al., 2016; Meju et al.,
2018, 2019; Cai et al., 2021; Hoversten et al., 2021).

The algorithms for CSEM inversion in the recent literature
differ mostly in the algorithm to solve the modeling of

EM data and on the regularization strategy to stabilize
the linearized iterations (Hansen et al., 2016; Meju et al.,
2019; Hoversten et al., 2021; Cai et al., 2021). We
investigated the inversion of CSEM data based on the
modeling algorithm proposed by Mittet (2010). Accordingly,
we present a derivation for the gradient of the objective-
function fully based on the principle of correspondence
(de Hoop, 1996). This derivation, based on the adjoint-
state method (Plessix, 2006; Chavent, 2010), shows how
we can use the same forward algorithm proposed by
Mittet (2010) to compute the gradient with just a reverse-
time modeling. Our algorithm also differs on how to
regularize the inversion iterations. We use the model
reparameterization proposed by Harlan (1995); Claerbout
(2003) to stabilize the non-linear inversion, an import
feature of the method is to dispense the need to select,
usually by trial and error, a regularization parameter to
enforce some model penalization without degrade the data-
fitting (Lima et al., 2019).

We also evaluate two optimization algorithm. The
traditional LBFGS(Zhu et al., 1997; Nguyen et al., 2016)
and the much less memory demanding ADAM algorithm
(Kingma and Ba, 2014). Our numerical experiments
show that both algorithm were successful in fitting the
observations and correctly localizing the inversion target.
Moreover, model reparameterization was very effective in
enforcing the stabilization and helping to accelerate the
convergence of the inversion iterations.

Methodology

Forward modeling using the Correspondence Principle

The Maxwell’s equations in the time domain for a
conductive medium in the quasi-static limit are:

−∇×H(x, t)+σ(x)E(x, t) = −J(x, t), (1)
∇×E(x, t)+µ∂tH(x, t) = −K(x, t), (2)

where E(x, t) and H(x, t) represent the electric and
magnetic fields, respectively, σ(x) is conductivity tensor
and µ the magnetic permeability; the injection source
distributions, J(x, t) and K(x, t), represent the electric
and magnetic current density, respectively. We use this
convention for Fourier transform:

F(ω) =
∫ +∞

−∞

dt f (t)eiωt , (3)

f (t) =
1

2π

∫ +∞

−∞

dωF(ω)e−iωt , (4)

when mapping back and forth from time to frequency. The
Maxwell equations in the frequency domain are,

−∇×H(x,ω)+σ(x)E(x,ω) =−J(x,ω), (5)
∇×E(x,ω)− iωµH(x,ω) =−K(x,ω). (6)
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The correspondence principle (de Hoop, 1996) establishes
the relationship between equations (5) and (6) with
the Maxwell equations in frequency-domain for a non-
conductive dielectric medium:

−∇×H′(x,ω ′)− iωε′(x)E′(x,ω ′) =−J′(x,ω), (7)
∇×E′(x,ω ′)− iω ′µH′(x,ω ′) =−K′(x,ω ′). (8)

Following de Hoop (1996), the mapping from the
real conductive medium, equations (5) and (6), to its
corresponding fictitious dielectric model, equations (7) and
(8), can be achieved defining:

ω
′ ≡ (1+ i)

√
ωω0, (9)

ε′(x)≡ σ(x)/(2ω0) (10)

E′(x,ω ′)≡ E(x,ω), (11)

H′(x,ω ′)≡
√
−iω
2ω0

H(x,ω), (12)

J′(x,ω ′)≡
√
−iω
2ω0

J(x,ω), (13)

K′(x,ω ′)≡K(x,ω). (14)

The EM field equations in time-domain for the
corresponding factitious dielectric model are, accordingly,

−∇×H′(x, t ′)+ε′(x)
∂E′(x, t ′)

∂ t ′
=−J′(x, t ′), (15)

∇×E′(x, t ′)+µ
∂H′(x, t ′)

∂ t ′
=−K′(x, t ′). (16)

These results establish a theoretical one-to-one
relationship between EM forward problem in a conductive
medium and the EM forward problem in its corresponding
dielectric model. Mittet (2010) shows how to solve CSEM
forward problems in frequency-domain solving numerically
the corresponding time-domain equations in the fictitious
dielectric model. Initially he computes the current
density in the fictitious domain, by least-squares fitting
J′(x, t ′) to the field recorded J(x,ω) using equation (13),

J(x,ω) =

√
−2ω0

iω

∫ T

0
dt ′J(x, t ′)e−

√
ωω0t ′ei

√
ωω0t ′ . (17)

Solving (15) e (16) by finite-differences in time-domain
(FDTD) equations, the electric field in the conductive
medium can be synthetized on the fly from equation (11):

E(x,ω) =
∫ T

0
dt ′E′(x, t ′)e−

√
ωω0t ′ei

√
ωω0t ′ . (18)

Adjoint-state method for inversion fictitious domain

Inversion of EM data for the estimation of subsurface
resistivity is a nonlinear problem, which is usually solved
using iterative optimization algorithms. For most of these
algorithms, at each iteration, the resistivity model is
updated based on the gradient of the misfit objective-
function. The gradient of an objective-function can
computed very efficiently through the adjoint-state method
(Chavent, 2010).

The least-squares objective-function for the inversion of
EM data in frequency-domain in a conductive medium,
χ(σ), is

χ(σ) = ∑
s

∑
r

∑
ω

W E(xr,xs,ω)

2

∥∥∥Eobs(xr,ω;xs)

−E(xr,ω;xs|σ(x))‖2 , (19)
where the summation over all sources is indicated by index
s, the summation over all receiver positions is indicated
by superscript r and, the summation over all recorded
frequencies is indicated by ω. W E is a weighting factor
which penalizes the misfit between the modeled and
observed field components (Plessix and Mulder, 2008);
Eobs(xr,xs,ω) corresponds to the observed electric field
at the receiver position xr, due to a source located at xs,
for frequency ω; E(xr,xs,ω) is the corresponding modeled
field.

We apply the adjoint-state method to derive the gradient of
χ(σ) relative to the model conductivity. This method can
be understood as an extension of the Lagrange multipliers
method. We start from a Lagrangian functional which
contains the least-squares fitting objective function added
to constraints which enforce that the modeled fields and
medium properties should honor the Maxwell equation,
i.e.,

L (E,H,σ,λE ,λH) =

∑
s

∑
ω

∑
r

W E(xr,ω;xs)

2

∥∥∥Eobs(xr,ω;xs)−E(xr,ω;xs|σ)
∥∥∥2

+∑
s

∑
ω

ℜ

(∫
Ω

dΩλE∗(u) [−∇×H(u)+σ(x)E+J(u)]
)

+∑
s

∑
ω

ℜ

(∫
Ω

dΩλH∗(u) [∇×E(u)− iωµH(u)]
)

(20)

where u ≡ (x,ω;xs) and ℜ(z) indicates the real part of
its complex argument, z, and the adjoint-state fields,
λE(x,ω;xs) and λH(x,ω;xs), are determined imposing the
condition that the Lagrangian should be stationary relative
to first order variations on the EM fields (Plessix, 2006;
Chavent, 2010).

Requiring the first variation of the Lagrangian functional
relative to the modeled EM fields and model conductivity
to be stationary relative to EM fields perturbations, one
obtains the system of equations for the adjoint-state fields
λE and λH ,

∇×λH∗(u)+σ(x)λE∗(u) =

∑
r

δ (x−xr)W E(u)
[
Eobs(u)−E(u)

]
, (21)

−∇×λE∗(u)− iωµλH∗(u) = 0 , (22)
and the gradient of the objective function relative to the
conductivity tensor

∂ χ

∂σ

∣∣∣∣
x
= ∑

s
∑
ω

ℜ

{
λE∗(x,ω;xs)E(x,ω;xs)

}
. (23)

Therefore, after solving the adjoint-state equations, one
can evaluate the gradient of the objective function relative
to the conductivity.

Based on Mittet (2010) we derived the solution of equations
(21) and (22) using the correspondence principle. Our
derivation shows that the corresponding adjoint-field
equations in the fictitious dielectric medium in frequency-
domain are:
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−∇×λH ′(x,ω ′)+(−iω ′)ε′(x)λE ′(x,ω ′)

=−∑
r

δ (x−xr)J′(x,ω ′), (24)

∇×λE ′(x,ω ′)+(−iω ′)µλH ′(x,ω ′) = 0 . (25)
The relations between the adjoint-state equations in
conductive and the corresponding adjoint-state equation
in the fictitious dielectric medium derive from the
identifications:

ω
′ ≡ (1− i)

√
ωω0, (26)

ε′(x)≡ σ(x)/(2ω0), (27)

λE ′(x,ω ′)≡ λE∗(x,ω), (28)

λH ′(x,ω ′)≡−
√
−iω
2ω0

λH∗(x,ω), (29)

J′(x,ω ′)≡−
√
−iω
2ω0

∆E∗(x,ω). (30)

These correspondence relations should be compared with
equations (9)-(14) for the EM fields. Equations (26)-(30)
allow the transformation of time-domain adjoint-state fields
to the corresponding frequency-domain adjoint-state fields
in the conductive medium. We start transforming the
system of equations (24) and (25) to time-domain:

−∇×λH ′(x, t ′)+ε′(x)∂ ′tλ
E ′(x, t ′)

=−∑
r

δ (x−xr)J′(x, t ′), (31)

∇×λE ′(x, t ′)+µ∂
′
tλ

H ′(x, t ′) = 0 , (32)
subjected to homogeneous final conditions, i.e.,
λE ′(x,T ) = 0 and λH ′(x,T ) = 0 all over the modeled
domain and homogeneous boundary conditions on
the domain boundary. We can now use the algorithm
introduced by Mittet (2010) to solve these equations
numerically through finite-difference. The current density
to be injected at each receiver position is constrained by
the correspondence relation in equation (30):

∆E∗(xr,ω) =

√
−2ω0

iω

∫ T

0
dt ′J(xr, t ′)e−

√
ωω0t ′ei

√
ωω0t ′ ,

(33)
Finally, the adjoint field λE∗(x,ω) is evaluated on
the fly at each finite-difference time-update using the
correspondence relation in equation (28):

λE∗(x,ω) =−
∫ T

0
λE ′(x, t ′)e−

√
ωω0t ′ei

√
ωω0t ′ dt ′ . (34)

Sources for the adjoint-state equations

The estimation of the current density distribution J′(x, t ′)
for (31) is an important aspect in our implementation.
At each optimization iteration, for the receiver at xr, the
components J′i (x

r, t ′) are estimated from the corresponding
electric field residual components in frequency-domain,
∆Ei(xr,ωm) = Eobs

i (xr,ωm) − Ei(xr,ωm), for the set of
recorded frequencies, ωm, with m ∈ {1, · · · ,Nω}.

The discretization of equation (33) produces the linear
system:

∆E∗i (x
r,ωm) =

Nt

∑
n=1

AmnJ′i (x
r, t ′n) , (35)

where

Amn = ∆ t ′
√
−2ω0

iωm
e−
√

ωmω0t ′n ei
√

ωmω0t ′n . (36)

This linear system is highly ill-conditioned. To assure
stability and uniqueness to the solution of (35) we use
model reparameterization (Harlan, 1995; Claerbout, 2003),

J′i = PWm. (37)
and an additional set of ridge regression equations
(Menke, 2018), with damping parameter λt ,(

AP
λtI

)
Wm =

(
∆E∗i

0

)
. (38)

We solve this linear system using least-squares conjugate
gradient (Claerbout, 2003).

In equation (37), our choice for the operator P, was a
smoothing preconditioning operator, in which each row
corresponds to a Ricker pulse,

Pnk =
(

1−2π fp (tn− tk)
2
)

e−π fp(tn−tk)
2
, (39)

enforces a zero-mean pulse in time-domain and warrants
a casual response; the diagonal weight matrix W

Wnn = e−π fptn , (40)
promotes a minimum-delay pulse (Claerbout, 2003).

Model regularization and constraints

Traditionally, to stabilize the non-linear inversion a
commonly regularization is maximun smoothness,
which is take as finite difference approximation of
Laplacian operator (Cai et al., 2021). We used the model
reparameterization proposed by Harlan (1995). In this
case, we assume

σ = S3S2S1p, (41)
where Si indicates the smoothing operator acting along
the i-coordinate direction and p the auxiliary parameter
vector updated at each optimization iteration. So instead
of insert a regularization parameter, the smooth model is
modeled directly, without disregard the heterogeneities.
Consequently, the gradient used by the iterative optimizer
is

∂ χ

∂ pi jk
=

∂ χ

∂σlmn

∂σlmn

∂ pi jk
= S3

knS2
jmS1

il
∂ χ

∂σlmn
, (42)

where summation convention is assumed on repeated
indexes. We use an exponential filter (Hale, 2012) along
the i-coordinate direction to implement Si.

To further taylor the inversion results, we limit the model
electric conductivity to the interval (σL,σU ), thus enforcing
a priori information usually available about the geological
scenario for the inversion. Accordingly, we follow
Bording et al. (2021) and use the change of variables:

σ =

(
σU +σL

2

)
+

(
σU −σL

2

)(
eγ −1
eγ +1

)
. (43)

where γ ∈ R and is unbounded.

Numerical experiments

We validate our implementation in a simple isotropic
reservoir model proposed by Støren et al. (2008). Figure 1
(a) shows a vertical section of the resistivity model, which
is translation invariant along the direction normal to this
section and has a reservoir with 25 Ωm and dimensions
4.2 km in x-coordinate and 0.4 km in z-coordinate. The
initial model for all the inversion experiments, which also
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is translation invariant, is in Figure 1 (b).

The model has 18 km in the east-west direction (x-
coordinate), 10 km in north-south direction (y-coordinate)
and, 3 km of depth (z-coordinate). For the numerical
computations the model sampled in a mesh of 0.1 km along
z and, 0.2 km along x and y directions. The acquisition
geometry has receivers at every 0.1 km in x arranged in
the center of the model with respect to the y extension.
All receivers are at 0.65 km of depth. The sources are
located from 6 km to 12 km with 1 km interval. The fields are
sampled at a time rate of 20 ms. We computed the synthetic
data set with our implementation of the Mittet algorithm
(Mittet, 2010).
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Figura 1: Resistivity models used to obtain a) the observed
and b) the calculated synthetic data

Figure 2 presents the amplitude and phase of the fields
for the frequencies that we use in all the inversion
experiments: 0.25 Hz, 0.50 Hz and 0.75 Hz. One can see
the extension where the air-waves dominate the signal and
how it decreases with the frequency increase.
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Figura 2: a) Amplitude and b) phase of the electric field, for
the observed data (solid line) and calculated data (dotted
line).

One important point to assure the accuracy of the
inversion based on the correspondence principle is how
the source pulse in time-domain, in the fictitious dielectric
medium, fits the electric field observations, in frequency-
domain. Figure 3 illustrates that our strategy for the
source pulse estimation fits accurately the observed data.
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Figura 3: Spectrum of the ource pulse on the conductive
medium (solid curve), computed with equation (33). The
black dots indicate observed data in frequency-domain.

We apply to post-processing steps to gradient of object-
function to avoid artifacts in the inversion results. We muted
the gradient around the receivers depth to remove spurious
high-amplitude values and we preconditioned the gradient

using amplitude compensation, i.e., dividing the gradient
by the energy of the source field. Figure 4 shows the
post-processed gradient for the frequencies 0.25 Hz and
0.75 Hz. Due to this procedure one can somehow identify
an anomaly in the middle portion of the gradient associated
with the reservoir.
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Figura 4: Muted gradient, with amplitude compensation for
the frequencies a) 0.25 Hz and b) 0.75 Hz.

The regularization using model reparameterization differ for
the two inversion algorithms. For the ADAM algorithm,
we use an exponential window with half-length equal
to a single mesh interval for smoothing along depth,
and an exponential window with half-length of two mesh
intervals for smoothing the model horizontally. For the
LBFGS algorithm, the exponential smoothing window has
half-length of single mesh interval along all coordinate
directions.

We performed two inversion experiments for each inversion
algorithm. The first, using a single frequency data set of
0.25 Hz. The second, using multiple frequencies data set
with 0.25 Hz, 0.50 Hz and 0.75 Hz. We also assumed
model translation invariance along the y-direction in all the
inversions.

The Figure 5 (a) shows the resistivity model obtained
after 38 iterations for the single frequency data set.
Figure 5 (b) shows the resistivity model after 51 ADAM
iterations using the multiple frequency data set. The
single frequency result better recovered the location and
thickness of the reservoir, however the resistivity contrast
were underestimated. Figure 6 shows the corresponding
inversion results for LBFGS algorithm. Figure 6 (a)
shows the resistivity model after 7 iterations for the single
frequency data set and, Figure 6 (b) presents the resistivity
model after 5 iterations for the multi-frequency data set.
Again, the single frequency result estimated a better
location for the reservoir. The two inversions recover well
the resistivity contrast and over-estimated the reservoir
thickness. Observe that a single iterations of the LBFGS
algorithm might need several evaluations of the objective-
function and its gradient at the line-search phase of this
algorithm. The ADAM algorithm has no line-search.

Finally, Figures 5 and 6 show that all the models estimated
are consistent with the data used run the inversion. The
models estimated with the ADAM algorithm produce a
slight better data fit when compared with the corresponding
models estimated using the LBFGS.
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Figura 5: Resistivity model estimated using the ADAM
algorithm. a) for the single frequency data set, 0.25 Hz and
b) for the multi-frequency data set. The black rectangle
indicates the exact reservoir location.
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Figura 6: Resistivity model estimated using the LBFGS
algorithm. a) for the single frequency data set, 0.25 Hz and
b) for the multi-frequency data set. The black rectangle
indicates the exact reservoir location.
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Figura 7: Amplitude and phase for input data (solid
lines) and corresponding fit produced by the estimated
models using ADAM algorithm (dotted lines): (a)
single-frequency inversion amplitudes, (b) multi-frequency
inversion amplitudes; (c) single-frequency inversion
phases, (d) multi-frequency inversion phase.
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Figura 8: Amplitude and phase for input data (solid
lines) and corresponding fit produced by the estimated
models using LBFGS algorithm (dotted lines): (a)
single-frequency inversion amplitudes, (b) multi-frequency
inversion amplitudes; (c) single-frequency inversion
phases, (d) multi-frequency inversion phase.

Discussion

We use the adjoint-state method to derive the
correspondence between the inversion of CSEM and
the inversion of the electric permittivity in a dielectric
medium based on the correspondence principle (de Hoop,
1996; Mittet, 2010). This derivation shows how to compute
the contribution of each source to the gradient of CSEM
inversion using two finite-differences simulations in the
dielectric corresponding medium in time-domain. A
forward in time simulation do compute the fitting data
and a reverse-time simulation to back-propagate the
residuals between the observed and modeled data set.
Our numerical implementation of the inversion based on
this formulation was successfully validated for a synthetic
data set computed from a resistivity model representing
a simple reservoir. Another feature of our inversion
algorithm also validated by our numerical experiments is
the use of smoothing operators to stabilize the non-linear
inversion using model reparameterization. Our numerical
experiments show that this approach is effective in
tailoring the inverted model according to the design of
the smoothing operators (Ma et al., 2012). An attractive
feature of using the FDTD solution of Maxwell’s equations
as the modeling driver for CSEM inversion is that it can
be remarkably accelerated when implemented on GPUs,
thus improving the efficiency CSEM inversion of large 3D
resistivity models.

Conclusion

The inversion of CSEM data in the frequency domain
can be mapped into an equivalent inversion of time-
domain EM fields in a dielectric fictitious medium using
the correspondence principle. To reach this result, our
derivation adds to the already known mapping between
the EM forward problem in a conductive medium and
the forward problem in a fictitious dielectric medium
another mapping, between the adjoint-state equations

Sixteenth International Congress of the Brazilian Geophysical Society



CSEM INVERSION USING THE CORRESPONDENCE PRINCIPLE 6

in a conductive and the adjoint-state equations in the
corresponding dielectric medium. Once the forward
modeling and adjoint-state field are available, the gradient
of the least-squares objective function relative to the
medium resistivity is determined. The inversion can then
proceed using an iterative optimization algorithm. The
validation of this procedure for CSEM inversion on a
synthetic data set computed for a 3D simple reservoir
model estimated models consistent with the data. The
spatial resolution of the estimated modes depends on the
optimizer and the choice of regularization. Regularization
using model reparameterization proved very useful for this
application when compared to Tikhonov regularization. No
regularizing functional needs to be added to the data-
fitting objective function. Therefore, no trial and error
procedure to choose a regularization parameter needs to
be performed to enforce the desired penalization on the
solution.
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