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Abstract

Applied geophysics is an important discipline for
imaging and exploring the subsurface. Commonly,
the geophysical data is acquired, treated and inverted
to produce an interpreted model. In magnetics,
a challenging aspect is obtain a reliable image
of the causative magnetic sources, due to severe
non uniqueness of magnetic inverse problems. To
overcome this drawback, we revisit the work of Bijani
et al. (2015) and use the equidistance function in the
magnetic inverse problem of retrieving the framework
of homogeneous and isolated sources. This is done
by estimating the Cartesian coordinates of a set o
magnetic dipoles, all with the same magnetization
direction and dipole moment intensity. To achieve
this goal in a stable way, the graph theory and
the Minimum spanning tree problem are used to
define the equidistance function. A preliminary
test in a synthetic magnetic total-field anomaly
produced by a vertical dike model is presented and
briefly discussed. To bespeak the relevance of the
equidistance function, we run the Genetic Algorithm
for two values of regularizing parameters (i.e., λ = 0
and λ = 5). Preliminary results confirm the capability
of the equidistance function in estimating a stable and
compact ensemble of magnetic dipoles. Additionally,
the magnetic properties are also recovered in a reliable
way. Future perspectives are related to prepare more
complex synthetic tests (i.e., the dipping dike model),
a real data examples in a magnetic data acquired at
Arraial do Cabo, Rio de Janeiro state. A more refined
definition of the ideal regularizing parameter is also
necessary.

Introduction

Magnetics is a valuable method for solving a variety
of geophysical problems related to the knowledge of
the subsurface. One of major concern of this method
lies in the variations of magnetic properties of target
sources beneath the Earth’s surface. These rock units
produce particular perturbations in the measured total
field, reflecting variations of magnetic properties in the
subsurface, including distribution of magnetic minerals

and/or magnetization (Blakely, 1996; Shearer, 2005).
The knowledge of these issues allow geophysicists to
formulate different inverse problems for specific purposes.
Commonly, imaging the subsurface by inversion of
potential-field data is through mesh-based models (Ellis
et al., 2012; Shearer, 2005; Paine et al., 2001; Uieda and
Barbosa, 2012; Bijani et al., 2017) A pioneer paper in
using block model for solving a magnetic inverse problem
is Li and Oldenburg (1996). In this work, the subsurface
is represented by a mesh and the physical property (i.e.,
the magnetic susceptibility) within each cell is estimated
through a gradient-descent method. In this set of problems,
the magnetization direction is assumed to be induced by
the local Geomagnetic field. To stabilize the ill-posed linear
inverse problem, spatially dependent weighing functions
are considered.

Another important magnetic inverse problem estimates
the magnetization direction vector of geologic sources.
For example, Lelièvre and Oldenburg (2009) estimate
the Cartesian and spherical components of the total
magnetization direction vector in each cell of a voxelized
subsurface. To achieve good results, the method needs
promising prior geologic information to be incorporated
into the Cartesian and spherical formulation of the inverse
problem. Following this guideline, Oliveira et al. (2015)
invert the total-field anomaly to estimate the Cartesian
components of the total magnetization vector in a least-
squares sense. Despite good results for synthetic tests,
the major limitation of this method lies in the spherical
approximation, which is not suitable for more complex
geologic scenarios. More recently, Liu et al. (2018) propose
a 3D inversion of magnetic data to deal with remanent
magnetization and self-demagnetization of target sources
by sequential estimates of both magnetic intensity and
vector. To do so, the distortion analysis of Fedi et al.
(1994) is considered and the Koenigsberger ratio is used to
extract the remanent component of the total magnetization
direction vector.

A third type of inverse problem that is totally applied
to magnetic data is defining the approximate shape of
causative sources. Particularly, a mesh-free interpretive
model is necessary for a reasonable definition of the target
source. In this case, a set of geometric parameters are
estimated and the magnetization is known in advance
Chakravarthi and Sundararajan (2007); Martins et al.
(2011); Oliveira Jr and Barbosa (2013); Bijani et al. (2015,
2017); Galley et al. (2020); Carter-McAuslan et al. (2015).
In Bijani et al. (2015), a discrete gravity inverse problem
is proposed. Additionally, a novel regularizing strategy
(named equidistant function), based on the Minimum
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spanning tree problem, imposes homogeneity to estimated
the 3-D distribution of a set of point masses. The inversion
procedure is solve by means of an hierarchical genetic
algorithm. Synthetic tests with a vertical and a dipping dike
model are discussed for different values of the regularizing
parameter.

Inverse problems to retrieve the shape of target sources
are strongly dependent on initial models, specially
when gradient-descent methods are used. Alternatively,
practitioners are going for the global search optimization.
In this set of techniques, also known as meta-heuristic
methods, natural phenomena are numerically simulated, in
such as simulated annealing (SA), ant colony optimization
(ACO), and genetic algorithm (GA). The latter starts from
a random population of candidate solutions, whom are
progressively modified by the simulation of evolutionary
behavior of biological systems, until an acceptable result
is achieved Holland (1992); Chakraborty and Chaudhuri
(2003); Deep et al. (2009); Montana (1994); Parker (1999).
In this work, we revisit Bijani et al. (2015) and apply
the equidistance function to a 3-D discrete magnetic
inverse problem. In our case, the point masses are
switch to magnetic dipoles and the total-field anomaly is
now the data to be inverted. With this, we are intent
to retrieve the magnetic framework of a target source.
Additionally, the magnetic properties are also estimated
during the generations of the implemented GA. To verify
the relevance of our work, two tests with and without using
the equidistance function are presented. In both cases,
a vertical dike is the true source producing the noise-
corrupted synthetic total field anomaly to be inverted.

Methods

The discrete magnetic inverse problem

Suppose that ∆Tobs is an N-dimensional vector containing
the total-field anomaly (TFA), in nT, produced by a
homogeneous source in subsurface, as shown in Figure 1
(a). The magnetic forward problem consists of representing
the interpretive model by an ensemble of M magnetic
dipoles, all with the same magnetization direction and
dipole moment intensity. The set of magnetic dipoles are
placed in a three-dimensional domain, as can be seen in
Figure 1 (b).

(a) (b)

Figure 1: The magnetic problem sketch. (a) true
homogeneous source, in brown, and the observed TFA at
surface, represented by the contour map. (b) magnetic
dipoles (orange circles), all with the same magnetization
direction, and the predicted TFA in contour map at surface.

To calculate the k-th total-field anomaly produced by the set

of magnetic dipole, we use Blakely (1996):

∆Tk(q) = (
M

∑
i=1

bxi +Fx)
2 +(

M

∑
i=1

byi +Fy)
2 +(

M

∑
i=1

bzi +Fz)
2−|F|

(1)
where, k goes from 1 to N observation points, Fx, Fy, Fy are
the Cartesian components of the local Geomagnetic field,
|F| = (F2

x +F2
y +F2

z )
1/2 represents the local Geomagnetic

field intensity and bxi , byi , bzi are Cartesian components of
the magnetic induction produced by the i-th dipole. The
sum of equation 1 over all N observation points creates
the predicted data-vector ∆T(q),referred here as predicted
total-field anomaly.

Imagine know that u = (i,d,m0) is a 3-dimensional
vector containing the physical properties (i.e., magnetic
inclination, declination and dipole moment intensity,
respectively) of the magnetic dipoles. Additionally, vector
p = (x′1,y

′
1,z
′
1, . . . ,x

′
M ,y′M ,z′M) is a 3M-dimensional vector

with the Cartesian coordinates of the M magnetic dipoles.
Bunching vectors u and p), we create a 3M + 3 parameter-
vector q, which can be expressed in partitioned form as:

q = (u p) (2)

The discrete magnetic inverse problem consists of
estimating a 3-D spatial distribution of dipoles and their
magnetic properties that minimizes the following data-misfit
function in a least-squares sense:

φ(q) = ||∆Tobs−∆T(m)||2, (3)

where ||.|| is the Euclidean norm and ∆T(q) is the predicted
TFA computed by Equation 1. Equation 3 computes the
difference between measured and predicted data at the
same observation points. Commonly, geophysical inverse
problem are ill-posed, which means that the information
contained in the data is not sufficient to estimate the
parameter-vector in a stable way. To deal with this issue,
we define the following objective function:

Γ(q) = φ(q)+λθ(p), (4)

where θ(p), also known as stabilizing function, imposes
physical and/or geologic attributes to the solution. The
non-negative scalar λ controls a compromise between
φ(m) and θ(p). Bijani et al. (2015) defined θ(p) as
the equidistance function, whose purpose is impose
homogeneity to the 3-D spatial distribution of magnetic
dipoles in subsurface. To do so, the ensemble o magnetic
dipoles are treated as nodes of a graph and the Minimum
Spanning Tree (MST) problem (Held and Karp, 1971;
Graham and Hell, 1985; Singh, 2009) is solved by Kruskal’s
algorithm (Kruskal, 1956). The spacial distribution of
magnetic dipoles should respect the MST concept, which is
basically finding a fully-connected graph with minimum sum
of edges. The equidistance function is defined by Bijani
et al. (2015) as follows:

θ(p) =
1

M−1

M−1

∑
i=1

[dMST
i (p)−dMST ]

2, (5)

where dMST is the mean of distances of an MST, dMST
i (p)

is a vector connecting adjacent dipoles in an MST, M
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is the number of magnetic dipoles and p is the M-
dimensional vector containing the Cartesian coordinates
of the ensemble of dipoles. The minimization of Equation
5 ensure that all magnetic dipoles are equal distance
apart. So, if θ(p) is zero, all edges of the MST have the
same length.Once the discrete magnetic inverse problem
is defined, we can go further and present the minimizing
engine used in this work: the Genetic Algorithm.

Inverse procedure: Genetic Algorithms

Genetic algorithms consist of a random search algorithm
based on the mechanics of natural selection and natural
genetics (Goldberg and Holland, 1988; Montana, 1994).
Genetic algorithms are widely used in optimization
problems due to its capacity of finding the global minima
of multi-modal functions (Holland, 1992).

Differently from deterministic methods, Genetic Algorithms
(GAs) require not only a starting model, but a set of starting
models, referred herein as an initial population. The initial
population is randomly selected inside a search space,
which is crucial for an accurate performance of the GA.
In our magnetic inverse problem, the parameters to be
estimated are: Cartesian coordinates of the ensemble
of magnetic dipoles, magnetic inclination, magnetic
declination and magnetic dipole moment intensity. Each
parameter needs a search limit, which is initially defined
by the interpreter. For a better estimation of the magnetic
dipole moment intensity, the final estimated value should
be as close as possible to the middle of initial search
limit. Otherwise, we should redefine the ranges of the
search limit and run the GA again. This is important aspect
to ensure that the algorithm guides us to a promising
minimum that fits the magnetic data.

Figure 2: Flowchart of the our Hierarchical GA.

In this work we implement an Hierarchical Genetic
Algorihtm (HGA), in python Language, and the flowchart
of the code is presented in Figure 2. The relevant stages
in the implementation of the genetic algorithm, such as
crossover, mutation and selection of parents are widely
discussed in Goldberg and Holland (1988) and Parker
(1999).

The selection of parents operator simulates the how

a family can be created. In our implementation, the
Tournament is considered, which a promising individual is
selected in a subgroup of the total population (Goldberg
and Holland, 1988; Parker, 1999).

A crossover operator consists of generating an offspring
population based on the selected parents. A real-coded
crossover based on arithmetic mean is implemented in our
HGA (Goldberg and Holland, 1988; Bijani et al., 2015).

The Mutation operator is fundamental for preventing the
estimates from local minimum entrapment Coello et al.
(2004); Chakraborty and Chaudhuri (2003). In our
case, each offspring population member (i.e., one set of
magnetic dipoles) have a small probability of mutating
one or more parameters (i.e., coordinates and/or magnetic
parameters). The mutation is calculated by using a simple
weighted arithmetic mean. The weights are randomly
selected and define how close the parents and offsprings’s
parameters are.

We also consider an hierarchic procedure in our
implementation. At this stage, a sub-population of ne
individuals, decreasingly ordered in terms of the objective
function Γ(q) is replicated to the next generation. The
hierarchic procedure accelerates the convergence, once
promising solutions (i.e., with lower Γ(q) values) are
always placed into the current population (Chakraborty and
Chaudhuri, 2003).

Tests with noise-corrupted synthetic data

To produce the synthetic total-field anomaly, we buried a
vertical prism with a true magnetic dipole moment intensity
of 3.8× 109 Am2, elongated at z and y-directions, ranging
from 200 m to 4000 m and from −2500 m to 2500 m,
respectively. The x coordinate varies from −500 m to
500 m. The true magnetic inclination (I) and declination
(D) of the vertical dike are both 0o, while the regional
magnetic inclination (I′) and magnetic declination (D′)
are 5o and 70o, respectively. The forward calculations
are based on (Blakely, 1996). Two tests with different
regularizing parameters are presented, similarly with Bijani
et al. (2015). Additionally, the data size is N = 400 and
the total-field anomaly is corrupted with random Gaussian
noise of zero mean and a standard deviation of 5 nT. For
both tests presented in this work, The search limit values
for each parameter are highlighted in Table 1.

Table 1: The search limits use in the initial population. In
the lines of the table are found minimum and maximum
values of each parameter, respectively. In the columns
observed the parameters are x, y, and z coordinate,
magnetic inclination, magnetic declination, and magnetic
dipole moment intensity.

Seach Limits
X (m) Y (m) Z (m) I′(o) D′(o) Moment (Am2)

-5000 m -5000 200 −5 −5 1.24×109

5000 m 5000 4000 5 5 1.29×109

Test with λ = 0

In this case, we are not making use of the equidistance
function during the minimization of Γ(q). Figure 3 (a)
and (c) show different spatial perspectives of the best
initial solution, while Figure 3 (b) and (b) show the best
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solution of the last generation. As expected, the best initial
solution presents a high dispersion of magnetic dipoles,
while the best solution after 3000 generations shows the
dipoles occupying the significant part of the vertical dike.
Despite evidences of a good result, we do not guarantee
that the dipoles are homogeneously distribution along the
interpretive model.

(a) (b)

(c) (d)

Figure 3: The results of the HGA for λ = 0. Orange prism
represent the vertical dike and blue spheres symbolize
the magnetic dipoles. (a) Best initial solution. (b) Best
final solution after 3000 generations (3D view). (c) Best
initial solution (2D view). (d) Best final solution after 3000
generations (2D view).

Figure 4 (a) presents the observed total-field anomaly
produced by the vertical dike model.

(a) (b)

(c)

Figure 4: Geophysics results, obtained through HGA with
λ equal 5. (a) Fit between observed (contour map) and
predicted total-field anomaly (gray contour lines). (b)
Residual map. (c) Residuals histogram.

Additionally, the residuals are represented in contour map
(The figure 4 b) and in histogram (4c). These images show
that the predicted total-field anomaly reasonably fits the
observed data. Despite, we reinforce that the solutions
are not stabilized.Figure 5 (a) shows the convergence
of the objective function (i.e., 4) over the generations.
We clearly observe a fast convergence but with some
stagnancy after generation 1000. Figures (5 (b) and 5
(c) show the magnetic inclination and declination through
the generations of our HGA, respectively. The true
direction is quite close the the estimated one, despite of
no stabilization.

(a) (b)

(c)

Figure 5: Convergence graphs with com λ equal 0.
The red circle represents the true magnetic inclination
while the blue circle represent the estimated magnetic
inclination. (a) Convergence of the objective function. (b)
Magnetic inclination estimates over the generations of our
HGA. (c) Magnetic declination estimates during the HGA
generations.

Vertical dike with λ = 5

In this test, we turn on the equidistance function and set
λ = 5 by trial. Figure 3 (a) and 6 (c) show different
spatial perspectives of the best initial solution, while the
final solution is shown in Figure 3 (b) and (d). Although we
can see a good distribution of magnetic dipoles in Figure
6 (b), the 2D view of 6 (d) shows that the set of magnetic
dipoles are more compact, which confirm the stabilization
offered by the equidistance function.
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(a) (b)

(c) (d)

Figure 6: Results of our HGA for λ = 5. Orange prism
represent the vertical dike model and blue spheres are the
ensemble of magnetic dipoles. (a) Best initial solution. (b)
Best final solution after 3000 generations (3D view). (c)
Best initial solution (2D view) and (d) best final solution
after 3000 generations (2D view).

Figure 7 (a) shows the observed and predicted total-field
anomaly for this test. In this case, the fit is not desired,
which might be related to an exaggerated λ value. The
residual map and histogram presented in Figure 7 (b) and
(c) respectively reinforce the undesired misfit.

(a) (b)

(c)

Figure 7: Results for λ = 5 . (a) Fit between observed
(contour map) and predicted (contour gray lines) total-field
anomaly . (b) Residual map. (c) Residuals histogram.

Figure 8 (b) and (c) shows the behavior of the data-
misfit function ( φ((q)) ) and the equidistance function
(θ(p)) separated. We observe that the HGA prioritize the
minimization of (θ(p)), which is clearly related to the high
value of λ .

(a) (b)

(c) (d)

(e)

Figure 8: Convergence curves for λ = 5. (a) Objective
function. (b) Data-misfit function. (c) Equidistance function.
(d) magnetic inclination and (e) magnetic declination.

Figure 8 (a) show the convergence curve of the objective
function, stagnated once again. Figures 8 (d) and
8 (e) present the magnetic inclination and declination
convergence, respectively. We observe a similar behavior
of the first test, which indicates no need for stabilizing this
set of parameters. In this case, we include the convergence
curve of the equidistance function θ(q), following the same
guideline in Bijani et al. (2015).

Conclusions

We hope that through this work we have demonstrated
that the equidistance function, previously presented in a
gravity inverse problem, also produces reliable results for a
three-dimensional magnetic inverse problem. Using a set
of dipoles with identical magnetic properties, we implement
a Hierarchical genetic algorithm to minimize an objective
function composed of a data-misfit term and a stabilizing
term. The latter is a dispersion function that measures the
compactness of the ensemble of dipoles. Preliminary test
on a vertical dike model suggests improvements related to
the search for an ideal regularizing parameter. Additionally,
convergence curves show that the HGA converges really
fast, but some stagnancy is also observed and need to
be treated accurately. Improvements in specific genetic
operators, as crossover and selection of parents are
required. Another synthetic test comprising a dipping
magnetic dike and also a real magnetic data example,
acquired in Arraial do Cabo, RJ are also considered as
future investigations.
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