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Abstract 
We propose a fast and accurate method to estimate the 
non-stationary triangle smoothing radius for matching 
seismic datasets. The smoothing radius is estimated by 
non-linear least-squares inversion using an iterative 
Gauss-Newton approach. We derive and implement the 
derivative of the smoothing operator to compute the 
gradient for inversion. The efficiency of the proposed 
method is confirmed in two applications: least-squares 
migration and matching low-resolution and high-resolution 
seismic images from the same exploration areas. 

Introduction 
Triangle smoothing is a widely used and efficient filtering 
operation that finds application in regularizing seismic 
inverse problems and computing local attributes (Fomel, 
2007a; 2007b). 
Greer and Fomel (2018) developed an iterative method for 
an iterative estimation of the smoothing radius for non-
stationary smoothing in matching two seismic datasets. 
The method is based on the local frequency attribute and 
has been applied successfully for approximating the 
inverse Hessian operator in least-squares migration (Greer 
et al., 2018). 
Chen (2021) introduced a multi-dimensional non-stationary 
triangle smoothing operator in local time-frequency 
transformation (Liu and Fomel, 2013) to address the non-
stationary nature of the input seismic data. This 
transformation was proven to be useful in several practical 
applications of time-frequency analysis. Chen and Fomel 
(2021) proposed a new non-stationary local signal and 
noise orthogonalization method as an alternative to local 
signal-and-noise orthogonalization method (Chen and 
Fomel, 2015). In this approach, the stationary triangle 
smoothing constraint for the local orthogonalization weight 
becomes a non-stationary smoothing constraint. For highly 
non-stationary data, the smoothing radius is small where 
the signal is dominant, and it is large where the noise is 
dominant; thus, the radius adapts to achieve the optimal 
stability and accuracy. Wang et al. (2021) proposed a 
robust non-stationary local slope estimation method that 
balances both the stability and the resolution of slope 
perturbations by controlling the strength of triangle 
smoothing in the shaping regularization framework within 
the plane-wave destruction algorithm (Fomel, 2002).  
  

While these new non-stationary methods improve 
resolution and accuracy, they also introduce additional 
computational cost with the necessary step of estimating 
the non-stationary triangle smoothing radius. Chen and 
Fomel (2021) noted that the non-stationary local 
orthogonalization method compared to the stationary 
method is almost 15 times slower due to the time-
consuming step of estimating the non-stationary triangle 
smoothing radius. While the iterative method of Greer and 
Fomel (2018) is robust and effective, it does not provide an 
optimally fast convergence.  
In this paper, we propose an alternative method to estimate 
the non-stationary triangle smoothing radius. We derive a 
new operator - the triangle smoothing derivative, which is 
used to guide better estimates for the radius in regularized 
least-squares inversion using an iterative Gauss-Newton 
approach.  

Triangle Smoothing 
A box filter is defined in the Z-transform notation as 
follows (Claerbout, 1992): 

𝐵(𝑍) = 	 '
(
(1 + 𝑍 + 𝑍+ + ⋯+ 𝑍(-') = '

(
.'-/01
('-2)

  (1) 

𝑍 = 𝑒4567 = cos(𝑤Δ𝑡) + 𝑖 sin(𝑤𝛥𝑡) (2) 

where 𝑁 is the number of samples included in a moving 
average under a rectangular window, 𝑤 is the frequency in 
radians, and Δ𝑡 is the interval spacing in time. Division by 
(1 − Z) is the operation of causal integration and it 
corresponds to the following recursion in time: 

𝑦F = 𝑥F − 𝑥F-' (3) 

The adjoint of this operation is anti-causal integration, or 
the division by (1 − 𝑍-'), and is represented by the 
following recursion: 

	𝑥F = 𝑦F + 𝑥F-' (4) 

A triangle filter is defined as the cross-correlation of two 
box filters (Claerbout, 1992):  

𝑇(𝑍) = 𝐵(𝑍)	𝐵(𝑍-') = '
(I

.+-/0-/J01
('-2)('-/JK)

  (5) 

where 𝑁 is the triangle smoothing radius, or half the 
number of points averaged under a triangle window. 
Triangle smoothing is efficient because it requires only 
𝑛	multiplications for 𝑛 data samples followed by a chain of 
causal and anti-causal integration independent of the size 
of the smoothing radius. By expanding 𝑍 and redefining the 
triangle smoothing radius as 𝑅, we can define a triangle 
filter as a function of the smoothing radius and frequency: 

𝑇(𝑅,𝑤) = '
OI
P+-+QRS(O567)
+-+QRS(567)

T = 	 '
OI
U
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^
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  (6) 
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To implement smoothing with a non-integer radius 𝑅 in the 
time domain, we interpolate the results of smoothing by the 
integer radius 𝑁 and 𝑁 + 1. After choosing the appropriate 
weighting coefficients, we define the approximate triangle 
smoothing function for a non-integer smoothing radius as 
the following:  

𝑇F_F-4F7`a`b(𝑅, 𝑤) = P((c')
I-OI

((c')I-(I
T 𝑇(𝑁, 𝑤) + P OI-(I

((c')I-(I
T 𝑇(𝑁 + 1, 𝑤)  (7) 

To justify the weighting coefficients we chose, we match 
the 2Fe order Taylor expansion of equations (6) and (7) 
around the zero frequency 𝑤 = 0: 

𝑇(𝑅,𝑤 = 0) = 𝑇F_F-4F7`a`b(𝑅,𝑤 = 0) ≈ -'
'+
(𝑅+ − 1)𝑤+ + 1  (8) 

The approximations match to the second order, similar to 
the accuracy of triangle smoothing in approximating the 
ideal Gaussian smoother. 

Triangle Smoothing Derivative  
We now proceed with introducing a new operator, the 
triangle smoothing derivative, which is obtained by taking 
the derivative of equation (6) with respect to the radius 𝑅: 

eh
eO
(𝑅,𝑤) = 	 [𝑖𝑤] U

-467 SVWXYZ[\I ]

+OI SVWIXZ[\I ]
^ − +

O
𝑇(𝑅,𝑤)  (9) 

We implement the triangle smoothing derivative in the time 
domain using the following three steps:  

1) A digital filter analogous to smoothing involving a 
chain of causal and anti-causal integration. 

𝐹(𝑍) = 	
1
𝑁+

𝑍( − 𝑍-(

(1 − Z)(1 − 𝑍-')
 (10) 

2) Approximating the derivative of the result of step 
1 by taking the 2Fe	order central difference.  

3) Subtracting from the result of step 2 the result of 
smoothing normalized by +

O
 .   

To approximate the triangle smoothing derivative function 
for a non-integer radius we use the following interpolation:  
  

eh
eOF_F-4F7`a`b

(𝑅,𝑤) = [(𝑁 + 1) − 𝑅] eh
eO
(𝑁,𝑤) +

[𝑅 − 𝑁] eh
eO
(𝑁 + 1, 𝑤)  

(11) 

The weighting coefficients we chose here are justified by 
matching the 2Fe		order Taylor expansion of equations (9) 
and (11) around the zero frequency 𝑤 = 0: 
 

eh
eO
(𝑅,𝑤 = 0) = eh

eOF_F-4F7`a`b
(𝑅,𝑤 = 0) ≈ -'

l
𝑅𝑤+  (12) 

Both triangle smoothing and the triangle smoothing 
derivative have a straightforward non-stationary 
implementation where the smoothing radius changes for 
each point along a trace. The non-stationary 
implementation is a direct extension of the stationary 
implementation because all equations depend directly on 
the radius.  

Estimating the Smoothing Radius 
Now that we have obtained the triangle smoothing 
derivative, we can develop a method to estimate the radius 
given the original and filtered datasets. We utilize the 
Gauss-Newton approach of solving a non-linear least-
squares problem (Lawson and Hanson, 1995). We define 
a triangle smoothing operator with radius 𝑅 applied to data 
𝑑 as 𝑆O[𝑑], and a triangle smoothing derivative operator as 
𝑆Oo [𝑑]. Given the original data 𝑑4Fpq7, we define the 
following Taylor expansion:   

𝑆Or𝑑4Fpq7s ≈ 𝑆Otr𝑑4Fpq7s + 𝑆Ot
o r𝑑4Fpq7s(𝑅 − 𝑅u)   (13) 

where	𝑅 is the best estimate for the radius and 𝑅u is the 
first guess for the radius. Noting that 𝑆Or𝑑4Fpq7s = 𝑑_q7pq7, 
the filtered data, we rearrange equation (13) to solve for 𝑅:  

𝑅 ≈ 𝑅u +
evw\xw\-	yYtrez{xw\s

yYt
| rez{xw\s

  (14) 

We can repeat this approach and solve for the radius 
iteratively, where the radius at the 𝑖7} iteration is given by: 

𝑅4c' = 𝑅4 +
evw\xw\-	yYzrez{xw\s

yYz
| rez{xw\s

  (15) 

This method in theory converges in a rate approaching 
quadratic, although the convergence is not guaranteed if 
the initial guess is far from the true value (Lawson and 
Hanson, 1995).  

The proposed method is directly extended to solve for a 
non-stationary triangle smoothing radius given that the 
triangle smoothing derivative is non-stationary as well. 
Defining the non-stationary triangle smoothing operator as 
𝑛𝑆 and the non-stationary triangle smoothing derivative 
operator as 𝑛𝑆o, we can estimate the non-stationary radius 
𝑛𝑅4 at the 𝑖7} iteration as follows: 

𝑛𝑅4c' = 𝑛𝑅4 +
evw\xw\-	Fy{Yzrez{xw\s

Fy{Yz
| rez{xw\s

  (16) 

Note that for stability of the solution, we must take care in 
performing the division in equation (16). We implement 
smooth division which treats division as inversion and 
regularizes the inversion using shaping regularization 
(Fomel, 2007a). The shaping regularization is controlled by 
its own smoothness radius and corresponds to stationary 
least-square estimate when the smoothing radius for 
shaping is set to be very large.  

First application: Least-squares migration 
Greer et al. (2018) proposed a method to improve 
migration resolution by approximating the least-squares 
Hessian operator using non-stationary amplitude and 
frequency matching between the first and second 
conventionally migrated images. Following Greer et al. 
(2018), we perform this application on a 2-D synthetic 
dataset created by Claerbout (2006) using Kirchhoff post-
stack migration and highlight the improvements in 
resolution and computational cost by using the new 
method to estimate the triangle smoothing radius.  
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Figure 1 – Estimated triangle smoothing radius after 9 iterations 
for A) line-search method and B) Gauss-Newton method.  

Figure 2 – A) 2-D synthetic reflectivity model (Claerbout, 
2006) B) Migration deconvolution line-search approach C) 
Migration deconvolution Gauss-Newton approach 

Figure 3 – Least-squares migration (LSM) errors for standard 
LSM (blue), LSM with starting model from line-search 
approach (red), and LSM with starting model from Gauss-
Newton approach (magenta)  

The frequency matching step is performed by estimating 
the non-stationary triangle smoothing radius to match local 
frequencies between the first and second conventionally 
migrated images. We perform both the line-search method 
(Greer and Fomel, 2018) and the proposed Gauss-Newton 
approach to estimate the non-stationary triangle smoothing 
radius. Our proposed method compared with the line-
search method produces a more smoothly varying radius, 
as seen in Figure 1. This is a desired result because a 
highly variable radius produces an image with high-
frequency noise that must be mitigated with regularization 
or bandpass filtering (Figure 2B). The image we produce 
with the proposed method to estimate the radius better 
matches the starting model without a need for smooth 
regularization (Figure 2C). 
Further, these images can be used as better starting 
models for least-squares migration (LSM). Figure 3 shows 
the errors in iterative LSM comparing standard LSM, 
starting model provided by line-search method, and 
starting model provided by Gauss-Newton method. The 
proposed method provides the best starting model for 
LSM.  
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Figure 6 – Normalized spectra of legacy (red) and high-
resolution (blue) before (A) and after (B) non-stationary 
smoothing.   

Figure 4 – A) High-resolution Image and B) Legacy Image  

Figure 5 – Initial guess for the smoothing radius (A) and 
estimated smoothing radius after 7 iterations (B). 

Second Application: Matching legacy and high-
resolution seismic images  
We apply our new method to estimate the radius in the 
workflow of matching and merging high-resolution seismic 
data and legacy data that were acquired over the same 
area (Greer and Fomel, 2018). The high-resolution seismic 
image has a larger frequency bandwidth and a higher 
dominant frequency, producing a high-resolution image of 
the shallow subsurface (Figure 4A). Legacy image, on the 
other hand, contains important low-frequency content, thus 
producing better depth coverage (Figure 4B).  
The first step in matching and merging the two images is 
to match their spectral content. We initially apply a high-
pass filter to the legacy data to remove the low frequencies 
that are not present in the high-resolution data. We then 
smooth the high-resolution image with a non-stationary 
triangle smoothing radius to match its local frequency 
content with the legacy image. The non-stationary triangle 
smoothing radius is estimated by directly implementing the 
algorithm in equation (20) by substituting the high-
resolution image as the input data 𝑑4Fpq7, and the legacy 
image as the filtered data 𝑑_q7pq7. The starting model for 
the radius is chosen carefully to preserve stability. The 
initial guess for the radius shown in figure 6A is a smoothed 
version of the theoretical smoothing radius proposed by 
Greer and Fomel (2018).  The estimated radius after 7 
iterations is shown in figure 6B. We compare both the 
spectral content (Figure 7) and the local frequency content 
(Figure 8) of the images before and after smoothing. The 
frequency content is better balanced after smoothing with 
the newly estimated radius.  
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Figure 7 Absolute difference in local frequencies between 
Legacy and high-resolution before (A) and after (B) non-
stationary smoothing of the high-resolution data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 
We have introduced a fast and accurate method to 
estimate the non-stationary triangle smoothing radius for 
matching seismic datasets. We derive and implement a 
non-stationary triangle smoothing derivative operator that 
guides better guesses for the radius in regularized least-
squares inversion using an iterative Gauss-Newton 
approach. Our method converges with a fast quadratic rate 
of convergence given an appropriate starting model for the 
radius. This method was shown to be effective in 
applications to improving migration resolution and to 
matching legacy and high-resolution seismic images. It can 
find additional application in other geophysical data 
analysis tasks.  
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