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Abstract 

Assisted interpretation via calibration of models that use 
machine learning (ML) concepts, through the application 
of the convolutional neural network (CNN) technique, can 
significantly reduce the time spent by interpreters with 
faults/fractures interpretation in seismic data. The fact that 
model training in the method used requires relatively few 
labeled data is a major advantage and allows for a clear 
reduction of time in the interpretation step, mitigating 
interpreter bias. Furthermore, training of such models in a 
cloud environment ensures the necessary resources that 
might, otherwise, lack locally for testing, leading to 
excessive time spent in this training step. Still, training the 
model requires care in the labeling of the seismic data, 
keeping the consistency in the interpretation process. 
Eventually, the calibration process may require several 
trained models even for the same seismic data, which can 
be trained with labeled data interpreted at certain depths 
or characterized by different structural styles within the 
same exploratory area. Using this approach, we consider 
that the time reduction allowed us to finish the fault 
interpretation phase in 2 weeks, which, otherwise, would 
take approximately 1-2 months. 

 

Introduction 

Broadly speaking, ML technology has been applied in 
different areas of activity and is reaching different parts of 
the oil industry. For the model creation process related to 
geoscience and subsurface, the time reduction in the 
execution of each step of the modeling workflows adds a 
significant value, shortening the exploitation cycle time of 
oilfields. The present work shows the use of machine 
learning to reduce the interpretation time of geological 
faults from seismic data, an activity that consumes a 
considerable amount of the interpreter’s time, which is not 
characterized by a simple mechanical activity. It requires 
prior knowledge of the structural style associated with the 
interpreted area, requiring expertise from the interpreter 
to properly deal with the limitations that the seismic data 
normally imposes in terms of resolution and quality. 
The CNN architecture applied here is a variation of U-Net 
(Figure 1), developed in 2015 with an initial application 

focused on segmentation in medical images 
(Ronneberger et al., 2015) and image processing and 
pattern recognition (Badrinarayanan et al., 2017).  
The recent success of ML approaches has brought new 
insights into the domain of seismic interpretation, 
capturing more structural features, in an optimum time 
frame. 

This workflow is based on the synergy of the interpreter`s 
expertise, who provides interpretation labels to train the 
ML model and uses the advanced image recognition 
technology (CNN) to estimate a fault prediction volume. 
This volume is then used in the extraction of faults objects 
directly from seismic data. 

 

 

 

 

The main input data in the evaluation of the ML algorithm 
was the seismic data of a Pre-salt field. This field is 
characterized by deepwater oil and natural gas fields, 
located at a water column of over 2,000m in the Pre-salt 
Santos basin, offshore of Brazil. The seismic data was 
acquired throughout a speculative streamer acquisition, 
presented by WesternGeco, the seismic acquisition 
branch of the Schlumberger company.  

Fault labels were interpreted along inlines and crosslines 
selected by the interpreter so that the ML algorithm could 
identify similar fault features in the seismic image.  

The seismic volume was not completely interpreted since 
we focused on the part with greater geological interest, 
and we also avoided a section of missing seismic data 
due to the presence of obstructions during the acquisition 
(Figure 2). 

 

Figure 1 – CNN model training scheme for detecting faults in 
seismic images. Data courtesy of Geoscience Australia. 
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Method 

There were two methods available to perform the training 
of the CNN algorithm: one method uses the interpretation 
done on public released seismic volumes to train the CNN 
algorithm. This database is based on faults/fractures 
interpreted on various public seismic data, which, 
therefore, is not necessarily related to the structural style 
present in our area. On the other hand, this approach 
may give a first idea of the structural features without 
requiring a previous interpretation for the labeling process 
and yielding results that could work as a starting point for 
the interpretation. In the other method, the training step is 
based on interpretations performed on the target seismic 
data itself. Compared to the total size of the volume to be 
processed by the CNN algorithm, the proportion of the 
volume to be interpreted and used for labeling in the 
training and validation steps is equivalent to 1 to 1.5% of 
the entire volume. This set of 1.5% is still divided into 2 
sets: one for training equivalent to 80% and another for 
validation (20%), using the latter to verify the accuracy of 
the result obtained by the trained model with the labeled 
data. 

The detection of faults by the CNN was only tested with 
the original seismic cube; that is, there were no tests 
involving attributes derived from seismic (attributes that 
highlight discontinuities, for example). The use of more 
than one attribute simultaneously was not available during 
this project. In this sense, for example, the use of the 
algorithm with multi-azimuthal data can be adapted via 
solutions that go through stacking the acquired data 
selecting specific azimuth sections. Also, stacking all 
azimuth cubes together but weighting them differently, 
according to the azimuth, may eventually, highlight faults 
that can be better illuminated by a specific azimuth. The 
use of the PS wave field was not tested, although the 
lower resolution, normally observed when compared to 
the PP wave field, may limit the quality of the interpreted 
faults. 

The faults/fractures used in the CNN training do not need 
to follow a specific fault structure, that is, there is no need 
for a fault to be interpreted within its full extent. The 
suggested criteria that should be followed are: 1- 
Interpretations should be conducted along inlines and 
crosslines; 2- Interpretations must be consistent in terms 
of patterns (for instance, always interpret faults, if 

possible, with similar throw in term of visibility, structures 
with alike dips, fault planes with similar clarity/visibility in 
the seismic data, etc...), 3- Fault at the edges of seismic 
cubes and in deeper regions of the data should not be 
neglected, if they are consistent with the specified pattern 
and seismic quality. 

Also, two constraints are available and can help the ML 
assisted interpretation process and, possibly, control both 
the preferential azimuth of the identified faults (Azimuth; 
not used in this work) and the segmentation of the fault 
planes into different fault sections, which is controlled at 
their crossing points (Planarity, used in this work). The 
automatic fault detection using this ML technique differs 
fundamentally from other assisted interpretation 
techniques (e.g., Ant Tracking) and comparations among 
them can be difficult to evaluate. 

Regarding the consistency in the labeled interpretations, it 
should be observed that both the training and validation 
must keep the interpretation pattern. Thus, we avoid 
inconsistencies between the data used in the training of 
the model and those used in its validation. Several 
versions of fault predictions trained with different labels 
were analyzed and compared carefully. The best model, 
considering the overall error calculated using a 
minimization function, is chosen. Inconsistent validation 
dataset can lead to erroneous conclusions about the 
accuracy of the final model. 

 

Results 

To evaluate the effect of different interpretations (labeled 
data) on the results derived from the application of the ML 
algorithm, three tests were conducted with different sets 
of labels provided as input to the ML algorithm. These 
input data were interpreted by different interpreters within 
the project and the final dataset was derived from the 
union of these interpretations. To maintain the 
consistency among the interpretations, only interpreted 
faults showing a high degree of similarity in the seismic 
image were selected. Eleven crosslines and 3 inlines 
were interpreted, observing the need to have from 1% to 
1.5% of the entire volume interpreted as previously 
mentioned. The labeled lines were divided into 80% for 
training (9 crosslines and 2 inlines) and 20% for validation 
(2 crosslines and 1 inline). 

The input datasets selected for the tests were elaborated 
seeking the evaluation of specific scenarios. The input 
datasets are described below: 

• First dataset: only faults interpreted in the Pre-
Salt were included (run1); 

• Second dataset: Pre-Salt faults and 
discontinuities features observed in the salt layer 
were included (run2); 

• Third dataset: only faults interpreted in the Pre-
Salt, but with small differences in the dip of some 
faults compared to the interpretation of the first 
dataset (run3). 

Comparing the results of the three scenarios, it was 
possible to evaluate how the input datasets changed the 
results for each trained model. Each model took 

Figure 2 – Detail of the seismic cube interpreted 
enhancing the area of interest (probe inserted in the 
larger area). 
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approximately 3 hours to be trained. Next, we show the 
comparisons, starting with the first scenario (run1). 

Figures 3 and 4 show a composition of crossline A 
(figure 3-C), one of the interpreted crosslines, and 
crossline B (figure 4-C), which was not interpreted. Both 
show the result of automatic interpretation via ML (in 
purple). The manual interpretation, provided for model 
training (in orange), is shown overlapping the automatic 
interpretation in the crossline A. Besides the seismic 
sections, maps show all crosslines (12) and inlines (3), 
which were manually interpreted and provided for training 
and validation (figures 3-A and 4-A), and all faults 
automatically interpreted (figures 3-B and 4-B, in purple). 

It is possible to see that structures/faults mapped via ML 
largely follow the faults provided as input in the labeled 
dataset. This is clearer viewed in the crossline B. It was 
not interpreted manually, but the ML algorithm was able 
to identify faults manually mapped in other crosslines also 
present in the crossline B. However, some faults which 
were, apparently, similar to faults previously mapped 
during the labeling phase, were not identified by the 
calibrated ML model. This may indicate the necessity to 
include more labeled faults for the ML algorithm. 

Figures 5 and 6 show the comparison of the second 
scenario (run2) with the automatic interpretation in blue 
and the manual interpretation in red, in a similar fashion 
shown in figures 3 and 4 for the first scenario (run1). Note 
that for this scenario the labeled dataset included features 
that resemble faults in the salt strata (figure 5-C). 
Moreover, other Pre-Salt faults were included, sometimes 
showing slight differences in the dip of the faults 
previously provided. What is perceived is that the pattern 
of faults identified by the algorithm changes substantially, 
with the detection of new faults, which are not so clear in 
the salt strata. There is also a change in the pattern of the 
faults automatically detected in the Pre-Salt when 
compared to the first scenario (run1), even though most 
of the faults used as input for training the model of the 
first scenario are also present in the second (run2). 

 

 

 

 

 

 

 

These differences observed between the first and second 
scenarios help to highlight the sensitivity of the ML based 
interpretation algorithm to the pattern of the labeled faults 
provided as the input to the training process. It is possible 
that even faults manually interpreted outside of the area 
of interest—the Pre-Salt —for example, can influence the 
training process of the model and can impact the behavior 
of the trained model. This experiment leads us to believe 
that the interpretations provided for the model training 
step should keep a systematic and coherent pattern, 
possibly working with different training datasets for 
models focused on different structural styles. For 
example, ML models that focus on Pre-Salt should have 
within the input training dataset only faults interpreted in 
this environment. Or, in case the objective is in the Post-
Salt region, only faults interpreted in this region should be 
provided during the training step of the model. 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

Figure 3 – Composition showing the crossline A (c) 
overlapped by manual interpretation (orange) and by the 
result of automatic detection via ML (purple). Besides the 
seismic section, it is shown the map (A) with the manually 
interpreted lines (labeled data) and the result of automatic 
detection via ML (B) throughout the analyzed area. 
 

Figure 4 – Composition showing the crossline B (c) 
overlapped by the result of automatic detection via ML 
(purple). Besides the seismic section, it is shown the 
map (A) with the manually interpreted lines (labeled 
data) and the result of automatic detection via ML (B) 
throughout the analyzed area. 

 

Figure 5 – Composition showing the crossline A (c) 
overlapped by manual interpretation (red) and by the 
result of automatic detection via ML (blue). Besides the 
seismic section, it is shown the map (A) with the 
manually interpreted lines (labeled data) and the result of 
automatic detection via ML (B) throughout the analyzed 
area. 
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Figures 7 and 8 show the results of the third scenario 
(run3). This scenario used as the input dataset interpreted 
faults (labeled) that are very similar to those belonging to 
the training dataset used in the first scenario (run1), only 
with the inclusion of faults with small differences in the dip 
plus the inclusion of a reduced number of faults with small 
lengths. Note that even these small differences are 
already enough to cause differences in the automatic 
interpretation using the ML algorithm. Again, this seems 
to be evidence of the sensitivity of the trained model to 
the labeled dataset provided in the training/validation 
steps. 

 

 
 
Figure 6 – Composition showing the crossline B (c) 
overlapped by the result of automatic detection via ML 
(blue). Besides the seismic section, it is shown the map 
(A) with the manually interpreted lines (labeled data) and 
the result of automatic detection via ML (B) throughout 
the analyzed area. 
 

 
 
Figure 7 – Composition showing the crossline A (c) 
overlapped by manual interpretation (purple) and by the 
result of automatic detection via ML (yellow). Besides the 
seismic section, it is shown the map (A) with the manually 
interpreted lines (labeled data) and the result of automatic 
detection via ML (B) throughout the analyzed area. 
 

Fault Extraction: calculation of Planarity and Azimuth 
cubes 

After the automatic interpretation step using the trained 
models, the obtained faults/structures went through a 
process called Fault Extraction to transform the identified 
features by the ML algorithm into point sets, which can be 

individualized into faults and edited later. The first phase 
of Fault Extraction is associated with two auxiliary 
properties used, respectively, in the separation of 
intersecting faults (Planarity) and sub-division based on 
azimuth sectors, according to an azimuth criterion 
(Azimuth). 

In this phase, two parameters—minimum threshold 
(varying from zero to one) and radius (defined in terms of 
voxels number)—are defined so that the faults detected 
with the ML algorithm can be extracted. The former 
parameter is responsible to inform the extraction process 
of what can be considered a fault or only a background 
noise and the latter defines a search radius (usually twice 
the thickness of the faults). A geometrical analysis is 
undertaken using a principal component analysis to 
determine Planarity and Azimuth attributes (Etchebes and 
al., 2019). 
 

 
 
Figure 8 – Composition showing the crossline B (c) 
overlapped by the result of automatic detection via ML 
(yellow). Besides the seismic section, it is shown the map 
(A) with the manually interpreted lines (labeled data) and 
the result of automatic detection via ML (B) throughout 
the analyzed area. 
 

The fault extraction process was applied both to the first 
(run1) and third scenario (run3) identified faults. The 
values used for the extraction were equal to 0.2 and 4 for 
the minimum threshold and radius, respectively, in both 
scenarios. Figure 9 shows, on a map extracted at depth 
5,830 ms the results of Planarity and Azimuth with the 
parameters above, calculated using the third scenario 
identified faults as the input dataset. Note that the faults 
identified using the ML technique show a structural 
pattern with faults NW oriented, which is characteristic of 
the studied area. 

The point sets representing each fault plane were 
obtained after the editing process using the Planarity 
propriety. In this work, the Azimuth propriety was not used 
for extraction purposes since the faults identified using 
the ML algorithm already follow the general orientation of 
the geologic structures of the area. 
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The point sets went through a manual quality control 
process that aimed to combine different point sets as a 
single fault, if necessary. Point sets that do not represent 
faults were eliminated and regions with crossing faults 
were corrected. Although this final quality control is done 
manually, the time spent for this step is reduced, given 
the presence of the previous controls during the fault 
extraction phase and the calculation of the point sets. 
Figure 10 shows the point sets after manual quality 
control. 

 

 

 

 

 

Quality control via stereograms: ML vs. manual 
interpretation 

One way to compare the result of interpretation using ML 
methods with manual interpretation is to use stereograms. 
Thus, we can see if the average behavior of azimuth and 
dip of the faults obtained via the two ways are similar. The 

fault poles were calculated based on the point sets of the 
faults detected after the manual editing process.  

Figures 11 and 12 show the stereograms for the point 
sets after editing (figure 11) and for the point sets after 
conversion to surfaces (figure 12). The figures help to 
identify potential issues detected in the first (11-A and 12-
A) and the third scenarios (11-B and 12-B). 

It is visible in the stereograms of point sets before 
conversion to surfaces (figure 11) that there are few 
differences between the results of the first (A) and third 
(B) scenarios. Such differences are derived from the 
small changes in the faults labeled for the training of each 
model. Analyzing the stereograms (figure 12) after the 
conversion of points sets to surfaces, there is a slight 
increase in the dip of the faults in both scenarios. This 
effect is derived from the smoothing process imposed on 
the surfaces to better adapt the surfaces to the points set. 

Figure 13 shows the stereograms of the manually 
interpreted faults (color density) and the poles derived 
from the point sets of the first scenario (run1), that is, 
before their conversion to the surfaces. Note that the 
stereogram showing the manually interpreted faults 
(figure 13-A) shows azimuths and dips similar to those 
observed in the stereogram representing the faults 
detection via ML (figure 13-B). 

 

 
 
Figure 11 – Stereograms with faults detected in the first 
(A) and third scenarios (B). The poles shown represent 
the point sets after quality control but before conversion to 
surfaces. 
 

 
 
Figure 12 – Stereograms with faults detected in the first 
(A) and third scenarios (B). The poles shown represent 
the point sets after conversion to surfaces. 
 

Figure 9 – Results for the Planarity (A) and the Azimuth 
(B) obtained from fault extraction of the scenario three 
(run3). Maps extracted at depth of 5,830 ms. 
 

Figure 10 – Point sets extracted during the fault 
extraction phase after the quality control and manual 
editing. The point sets shown were obtained using the 
output from the scenario three (run3). 
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Figure 13 – Stereograms comparing the result of manual 
interpretation (A) and automatic detection (B) obtained 
from the first scenario (run1). 
 

Conclusions 

The assisted interpretation via model calibration, using 
ML concepts through the application of the CNN 
technique, reduces importantly the time spent by 
interpreters to interprets faults. The fact that the training 
of the models requires relatively a small amount of 
labeled data is an important advantage, reducing the time 
in the interpretation stage. In this work, we consider that 
the time reduction allowed us to finish the fault 
interpretation phase in 2 weeks, which otherwise, would 
take approximately 1-2 months. 

Another advantage is the training model step being 
executed in a cloud environment, ensuring the required 
resources for both the model training step and parameter 
testing. Local machines/servers may lack the 
computational resources needed to conclude the 
processing in a feasible time frame. 

The approach, although machine-assisted, still requires 
the expertise of the geoscientist. We can mention that the 
need for consistency of labeled input datasets for training 
the models is critical. In this sense, the consistency 
among the interpreted faults of the labeled dataset — 
both for training and validation of the model — should 
always be observed. Furthermore, it is worth noting that 
different structural styles, for instance, the Pre-Salt and 
Post-Salt, will probably require separately trained models, 
increasing the time spent in the training phase. 
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