
Sparse Multichannel Blind Deconvolution with Regularization by Denoising
Thonia Cardoso Senna, Kenji Nose-Filho, Renato da Rocha Lopes

Copyright 2021, SBGf - Sociedade Brasileira de Geofı́sica.

This paper was prepared for presentation during the 17th International Congress of the
Brazilian Geophysical Society, held Online, in Brazil, November 8-11, 2021.

Contents of this paper were reviewed by the Technical Committee of the 17th

International Congress of the Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of The Brazilian Geophysical Society is prohibited.

Abstract

In this paper, we propose the regularization of the
multichannel deconvolution technique proposed by
Xu et al. (1995) applying a scheme that relies on
the Regularization by Denoising Engine proposed by
Romano et al. (2016). We compare our approach with
the widely known SMBD method of Kazemi and Sacchi
(2014), which is robust to noise and provides a sparse
solution. However, it also affects the relationship of
the reflectors amplitudes, in such a way that many
times smaller amplitude reflectors may disappear. Our
technique was tested with synthetic and real data
examples. The results show that, in addition to the
method being robust to noise, its application provide
a better image, in terms of preservation of events with
lower amplitudes as well as in terms of numerical
stability when compared to SMBD.

Introduction

When seismic data is generated, sources that have a
finite length and frequency content are used, which, along
with the addition of noise, reduces our ability to image
layers. Theoretically, the reflectivity series can be calculated
by removing the effect of wavelet from the observed
seismic trace (Robinson and Treitel, 1980). In geophysical
processing, however, direct wavelet measurements are not
always available and in its absence, we rely exclusively on
the measured data and on a minimal amount of hypotheses
concerning the signal of interest (Romano et al., 2010).
In these situations, we resort to unsupervised or blind
deconvolution techniques, which appears to be a powerful
tool for dealing with practical situations (Zhang and Gao,
2011).

Blindly estimating the signal of interest is an ill-posed
problem, as, for instance, in the seismic case, infinite
combinations of wavelets and reflectivity series may result
in the same trace. Thus, one of the main challenges in
this case is to establish a priori hypotheses about the
desired signal in order to achieve stable results of practical
value. Several methodologies have been proposed for this
purpose, many of which are based on severely limiting
assumptions and hypotheses. Normally, these assumptions
only work in an ideal scenario (e.g. considering the seismic
wavelet a minimum phase sequence, or the absence of
noise) and are not consistent with the practical reality of
geophysical acquisitions, greatly compromising the results

(Dondurur, 2010). Several methods emerged later in order
to circumvent these requirements, thus producing more
realistic results. Among them, we can highlight the Minimum
Entropy Deconvolution (MED), proposed by Wiggins (1978),
which, by assuming that the reflectivity is a sparse signal, is
able to estimate a nonminimum phase filter by maximizing
a measure of sparsity of the seismic trace (Donoho, 1981).

If, on the one hand, classical approaches are implemented
on a trace-by-trace basis, in this work we suggest the
application of a multichannel framework, which consider
that, e.g., in a common shot, the wavelet present in each
trace is the same. This is a problem that, in signal
processing, can be modeled as a SIMO (single input,
multiple outputs) system, or equivalently, several outputs
(the seismic traces) corresponding to a single input (source
wavelet) convolved with each channel (reflectivity series),
as illustrated in Figure 1. The study of the applications of
SIMO systems to the deconvolution of seismic data was
introduced in Rietsch (1997a) and Rietsch (1997b).

Besides being a reasonable assumption, supposing that
the wavelets are the same has some very interesting
consequences. For instance, it is possible to show that,
under some further conditions, we may be able to find an
algebraic formula that perfectly removes the wavelet, unlike
the SISO (single input, single output) methods, which even
under ideal conditions, may not guarantee exact recovery of
desired signal (Romano et al., 2010). However, as before,
these conditions are hard to verify in the practice of seismic
signal processing. Thus, the use of multichannel methods
for seismic signals requires some careful thoughts and
solutions (Nose-Filho et al., 2018).

In their work, Nose-Filho et al. (2018) discussed how the
large similarity between neighboring reflections may lead
to ill-posedness in multichannel problems and detailed how
some works in the literature use regularization methods
to find good solutions. An alternative method to tackle
this issue is proposed in this work and leverages the
results achieved by Romano et al. (2016), where they
applied regularization by denoising (RED) to effectively treat
general inverse problems. Their technique is guaranteed
to converge to the globally optimal result under some
assumptions. They demonstrate state-of-the-art results in
image deblurring and super-resolution problems.

Besides the important properties mentioned above, SIMO
channel frameworks have been studied by many authors
due to its remarkable ability to recover blurred signals: in
a SIMO model, if one of the channels happen to severely
degrade the signal, other received versions may still provide
the necessary information to correctly estimate the original
signal (Romano et al., 2010). In this paper, we will
combine these two attractive strategies, using regularization
based on denoising engines for the multichannel blind
deconvolution problem. We show, via synthetic and real
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Figure 1: In a SIMO system, the same information (seismic wavelet) is transmitted through different subchannels, since they are
all recordings of the same shot. Notice that all received sequences will be distinctly distorted versions of the same message,
which accounts for a certain signal diversity. Therefore, it is reasonable to assume that more information about the transmitted
signal will be available at the receiver end. It is like looking at the same landscape through different blurry windows: each sight
reveals you a different detail that perhaps is not so clear in the others (Romano et al., 2010).

land seismic data, that this solution is indeed effective for
blind seismic deconvolution, preserving small events, while
also being numerically stable and robust to noise.

In the first section, we describe how exactly SIMO models fit
in the framework of the seismic deconvolution of a common
shot. In the second section we introduce RED general
definitions and present some of its main ideas. In the third
section we describe a way to obtain a solution to our problem
by performing multichannel blind deconvolution using RED.
In the fourth section, we use the theoretical results from
previous sections to estimate reflectivity series from both
synthetic and real land seismic data. Finally, we concludes
this study with our achievements and general conclusions.

Multichannel Blind Deconvolution

We begin by presenting the noiseless SIMO model shown
in Figure 1. We model each trace xp(k) recorded at the pth
receiver as the convolution of the source wavelet s(k) with
the reflectivity series hp(k) seen by the signal that reaches
this receiver, i.e., xp(k) = hp(k)∗ s(k), p = 1...J. In terms of
z-transforms, we write

Xp(z) = Hp(z)S(z), p = 1...J (1)

Now, consider a pair of traces xp(k) and xq(k). According
to Equation 1, we can write, for each of the traces, Xp(z) =
Hp(z)S(z) and Xq(z) = Hq(z)S(z). Then, by isolating the
source wavelet, which is a common factor to both of the
traces, we have

S(z) =
Xp(z)
Hp(z)

=
Xq(z)
Hq(z)

. (2)

Consequently

Xp(z)Hq(z)−Xq(z)Hp(z) = 0. (3)

In the time domain, each term in Equation 3 can be seen as
the convolution of a trace with a reflectivity function, which
∀p,q, can be rewritten in matrix notation as follows:

Xphq−Xqhp = 0 (4)

where Xp is the convolution matrix of the pth trace:

Xp =


xp(0) 0 · · · 0 0
xp(1) xp(0) · · · 0 0

...
...

. . .
...

...
0 0 · · · xp(M−1) xp(M−2)
0 0 0 0 xp(M−1)

 (5)

and hq = [hq(0), ...,hq(K−1)]T is the vector formed with the
samples of the qth reflectivity function. The combination of
all possible equations leads to the following homogeneous
system of equations:

Ah = 0 (6)

where

A =



X2 −X1
X3 −X1
X4 −X1
...

. . .
X3 −X2
X4 −X2
X5 −X2
...

. . .


(7)

and h = [hT
1 , ...,h

T
J ]. The classical formulation of

multichannel deconvolution applied to seismic data,
proposed by Rietsch (1997a) estimates the reflectivity by
estimating the eigenvector associated to the minimum
nonzero eigenvalue of AT A. A small amount of noise in the
data makes the solution impractical for real data applications
Rietsch (1997b). Furthermore, if the signals of interest have
zeros in common, the method can lead to a solution that
does not correspond to the true solution, as pointed out in
Nose-Filho et al. (2018).

Regularization by Denoising

In the present work, we leverage the impressive results of
Romano et al. (2016), where they introduced the image
denoising engine. They were inspired by the fact that
the existing denoising methods are so sophisticated and
effective nowadays, and that their great performance could
be exploited to treat other tasks in image processing. In fact,
their proposal is an alternative to Chan et al. (2016), which
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had already proposed the Plug-and-Play prior (PPP), which
solves any inverse problem by sequentially applying image
denoising steps. However, PPP relies heavily on ADMM
optimization technique, whose parameters may be difficult
to tune. On the other hand, the use of Regularization by
Denoising (RED) from Romano et al. (2016) yields a more
powerful and more flexible framework for achieving the same
goal, centered in the idea that a denoiser can serve as a
regularizer.

They propose an explicit image-adaptive regularization
functional. This is in contrast to PPP, which uses an implicit
regularization functional. With their method, we are free to
choose the iterative optimization procedure for minimizing
the mentioned functional, not being tightly coupled to one
specific technique, as in the case of the Plug-and-Play
Prior. RED makes it possible incorporating any image
denoising algorithm, treat general inverse problems very
effectively, and is guaranteed to converge to the globally
optimal result under some assumptions on the denoiser.
The remarkable results that this technique has achieved in
image deblurring and super-resolution problems led us to
develop an adaptation to geophysical scenario as well.

More specifically, the regularization term they propose is of
the following form:

R(h) =
1
2

hT [h− f (h)] (8)

in which f (h) is the denoised version of the candidate
solution h. The resulting penalty is proportional to the inner-
product between this candidate solution and its denoising
residual. Surprisingly, under mild assumptions on f (.)1, it
was shown that the gradient of the regularization term is
simple, given as the denoising residual, h− f (h). Therefore,
armed with this regularization expression, they show that
any inverse problem can be handled with a simple gradient
descent method while calling the denoising engine iteratively
(Romano et al., 2016).

RED Multichannel Blind Deconvolution

In order to make multichannel deconvolution a feasible
strategy for real data, which have noise and yield ill-
conditioned problems, we propose an adaptation for this
process in which we optimize a data-fidelity term based on
the acquisition model, as is done classically in the area.
With the addition of noise in our model, the expressions (1),
(3), (4) and (6) become:

Xp(z) = Hp(z)S(z)+Np(z) p = 1, ...,J (9)

analogously, for a pair of traces p and q:

Xp(z)Hq(z)−Xq(z)Hp(z) = Np(z)Hq(z)−Nq(z)Hp(z) (10)

or, in matrix notation:

Xphq−Xqhp = Nphq−Nqhp (11)

which can be expressed in a condensed form as:

Ah = e (12)

1In the paper, the authors pose two necessary conditions on
f (.), namely (Local) Homogeneity and Strong Passivity

We propose to find a solution h that minimizes the `2 norm
of e combined with the regularization by denoising defined
in Romano et al. (2016), where they use denoising engines
in defining the regularization of the inverse problem. To
summarize, we want to minimize the following cost function
with a constraint to avoid the trivial solution (i.e., hT h = 1) :

ĥ = argmin
h

1
2
‖Ah‖2 +λhT (h− f (h))+βhT (h−g(h)),

subject to hT h = 1
(13)

In the above formulation we are going to make use of
two different denoising engines f (.) and g(.). f (h) is the
output of a simple prediction error filter, with adjustable
prediction lag D+1, making it possible to adjust the degree
of whitening of our desired reflectivity series. The third
term, on the other hand, has a built-in sparsity-promoting
denoising function g(h), given by the hard threshold function,
specified by a threshold ε = µ.max(abs(h)):

g(x) =

{
0, |x|< ε

x, |x| ≥ ε
(14)

The trade-off parameters λ and β balance the importance
of the term related to whitening and the term related to
sparsity.

Both functions satisfy the two necessary conditions
described in Romano et al. (2016). For the optimization,
we adopted the same steepest descent algorithm used in
Kazemi and Sacchi (2014).

Results

We firstly present some simulations with synthetic data as
it is essential that we know the value of the real reflectivity
in order to evaluate the method’s performance during its
development phase. The quality of the results will be
measured with the mean Pearson correlation coefficient
(PCC), which is also a measure of orthogonality, given by:

ρ =
1
J ∑

j

hT
j ĥ j

‖h j‖‖ĥ j‖
(15)

Another metric employed here to evaluate the preservation
of the amplitude of the events is the mean absolute
percentage error (MAPE) of the original events and the
estimated ones, only in their original positions considering
that both signals are normalized with their maximum
absolute value. So, the MAPE is calculated as:

MAPE = 100
1

∑ j ∑k r j(k)
∑

j
∑
k

|h j(k)− ĥ j(k)r j(k)|
|h j(k)|

(16)

In this case, we consider that each signal has been
previously normalized with their maximum absolute value
and the signal r j(k) can be seen as a mask function,
with ones in the positions containing a reflector and zeros
otherwise. This could be obtained by simply:

r j(k) =

{
0,h j(k) = 0
1,h j(k) 6= 0

(17)
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Trace number

0 5 10 15

T
im

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) - Seismic Trace

Trace number

0 5 10 15

T
im

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) - SMBD

Trace number

0 5 10 15

T
im

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) - SMBD-RED

Figure 2: Deconvolution results for SNR= 9dB. (a) Original reflectivity. (b) Generated seismic trace. Deconvolution results for (c)
SMBD- 200 iterations and (d) SMBD-RED- 200 iterations.
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Figure 3: Frequency spectrum for the data in Figure 2 (a),
Figure 2 (b), Figure 2 (c) and Figure 2 (d).

To test our method, we first run a synthetic example where
15 traces were generated with a sampling frequency of 500
Hz using the reflectivity shown in Figure 2 (a). The trace
shown in Figure 2 (b) is the convolution of the reflectivity with
a Ricker wavelet of central frequency 40Hz with 50 degrees
of phase shift plus additional white gaussian noise (AWGN)
with 9dB of SNR. We tried to recover our reflectivities
directly from the traces, using SMBD and SMBD-RED. In
this context, several simulations were carried out, in which
various combinations of parameters were tested. Here
we present the best parameters found by our simulations
(that is, those with the best balance between PCC and
MAPE), for both SMBD and SMBD-RED. For the SMBD
algorithm, the recovered reflectivity is shown in Figure 2 (c).

Its regularization parameter was set to 10, the smoothed
norm parameter was set to 0.0005 and 200 iterations were
performed. A PCC of 0.771 and a MAPE of 72.704 were
obtained. For the SMBD-RED technique, the recovered
reflectivity is shown in Figure 2 (d). The regularization
parameter λ was set to 50, β was set to 1000, µ was set to
0.4 and 200 iterations were performed. If, on the one hand,
the PCC value of 0.608 obtained by SMBD-RED (smaller
than the SMBD) could make us believe that this method
has no advantages over the first, the MAPE for SMBD-RED
method (41.203) could show us the opposite: in fact, we
can see in Figure 2 (d) that smaller and close events are
being preserved, while SMBD (Figure 2 (c)) makes them
disappear, affecting the interpretation of geological events.

In Figure 3 we illustrate the smooth frequency spectrum
of the original reflectivity series, the convolved traces and
the estimations with SMBD and SMBD-RED. As we can
see, despite of the fact that SMBD produces a more
flat frequency spectrum, the SMBD-RED spectrum better
preserves the shape of the trace and reflectivity spectrum
in the narrowband frequencies close to the wavelet central
frequency.

To further illustrate the performance of our technique,
we applied the method in the seismic data available in
Schleicher (2012), corresponding to a 2D terrestrial line
from National Petroleum Reserve (NPRA), acquired in the
northern region of Alaska. More details about the data
can be checked in Schleicher (2012). This data was pre-
processed based on scripts available in Schleicher (2012),
in order to remove poor quality traces and parts of the data
that could affect the processing. The data has a 4 ms
sample rate and we run both algorithms on 525 traces and
800 samples, starting at 1s. We performed both SMBD
and SMBD-RED deconvolution by separating the data into
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Figure 4: Deconvolution results for the 2D terrestrial line from National Petroleum Reserve (NPRA), available in Schleicher
(2012). (a) Original data, (b) SMBD- 150 iterations and (c) SMBD-RED- 150 iterations.
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Figure 5: Frequency spectrum for the data in Figure 4 (a),
Figure 4 (b) and Figure 4 (c).

windows of 25 traces and 800 samples, totaling 21 windows.
Figure 4 shows the input data and the deconvolution results
for SMBD and SMBD-RED. It is clear from these results that
the proposed algorithm better preserves weaker reflections.
The consistency and the quality of the estimates is also
easy to observe. Several combinations of parameters were
tested, among which we selected one that obtained a good
balance between PCC and MAPE:

• SMBD - regularization parameter was set to 10, the
smoothed norm parameter was set to 0.001 and 150

iterations were performed.

• SMBD-RED - λ was set to 200, β was set to 1000 and
µ was set to 0.4. 150 iterations were performed

In Figure 5 we illustrate the smooth frequency spectrum
of the seismic trace and the estimations with SMBD
and SMBD-RED. As already observed in the synthetic
simulations, the SMBD-RED spectrum better preserved the
shape of the trace spectrum in the lower frequencies.

Conclusions

Different authors have exploited the algebraic structure
of SIMO model to eliminate a blurring kernel and solve
a large set of linear equations directly for the signal of
interest, and so, perform deconvolution in a variety of
applications, such as biomedical imaging, geophysics,
remote sensing, microscopical and astronomical imaging,
channel equalization, speech dereverberation, etc..
Recently, Kazemi and Sacchi (2014) have shown that,
for seismic signals, pursuing sparse solutions of the
wavelet-free linear equations would be feasible and produce
results that are more robust to noise. This work gave
rise to other variants such as (Nose-Filho et al., 2016),
(Kazemi et al., 2016), and (Iqbal et al., 2019). Our
main motivation here was proposing a method that is
simultaneously robust to noise and that could preserve
the relationship between reflectors amplitudes, without
making smaller events disappear in the results. By
applying RED, an approach originally proposed for image
processing applications, we could get high quality seismic
deconvolution results, achieving our goals in terms of noise
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and preservation of smaller events. Another important
property of the proposed method is that it does not
require careful parameter tuning. In fact we observed that
small changes in parameters in our simulations did not
significantly alter the results.
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