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Abstract 

We present a new method to perform simultaneous sparse 
spike deconvolution in a group of volumes associated with 
different reflection angles. The proposed algorithm 
enforces co-localization of the spikes on the estimated 
reflectivity traces and allows user control of the sparsity via 
hyperparameters. The method is validated in both 
synthetic and real datasets with positive results. The 
resulting angle-dependent reflectivity volumes are suited to 
be used as input to perform high resolution elastic 
inversion. 

Introduction 

The band-limited character of routine seismic image 
volumes imposes resolution constraints for hydrocarbon 
reservoir characterization. These constraints are 
particularly restrictive for depositional settings with 
complex stratigraphic features. 

Based on the assumption that the subsurface rocks are 
mainly composed of layers with sharp boundaries, sparse 
spike deconvolution methods extend the spectral 
bandwidth of these volumes, thus improving the resolution 
of heterogeneous stratigraphic features (Hargreaves et al., 
2013; Kazemi and Sacchi, 2014; Rosa, 2018). The general 
goal of these methods is to transform the seismic traces in 
an estimate of the reflection coefficient series associated 
with the layer boundaries. 

Acoustic inversion methods can also benefit from the 
bandwidth extension provided by sparse spike 
deconvolved data, by using it as input to the inversion 
software (Cunha et al., 2018). 

In order to extend the applicability of sparse spike 
deconvolution to elastic inversion, it is advisable to 
constraint the solutions from traces associated with the 
same spatial position and different reflection angles, so 
that the angle-dependent reflectivity’s are representative of 
the same geological boundaries. (Xi et al., 2018) solves the 
problem by using a multivariate version of a modified 
Cauchy distribution. But, unlike the solution presented in 
this paper, the modified Cauchy distribution in (Xi et al., 
2018) has no parameter to control the sparsity of the 
solution and does not develop the full posterior distribution 
over the reflectivities. 

Our work is based on Automatic Relevance Determination 
(ARD) formalism explained in (Bishop, 2006). This is a fully 
Bayesian formalism which was created for linear 
regression problems, where one is interested in finding the 
sparsest solution (solution with a minimal number of non-
zero coefficients), but it can be applied to any linear inverse 
problem. In the geophysics literature, there are few 
publications that explore ARD formalism: (Valentine and 
Sambridge, 2018) present it in the context of inversion 
regularization techniques; (Ji et al., 2020) applies ARD to 
AVA joint inversion to P and S reflectivities. 

The novelty of the present work is that we apply the ARD 
algorithm to AVA inversion with a different kind of prior then 
the one used in (Ji et al., 2020), which enforces co-
localization of the reflectivity spikes throughout the different 
reflectivity traces. The present paper also makes no 
assumption regarding the seismic error spatial structure, 
which is determined in the proposed optimization 
algorithm. 

The results presented in this paper discuss the 
deconvolution of seismic stacks problem, although the 
tools developed here could also be applied to any kind of 
AVA seismic inversion (such as AVA to elastic reflectivities 
inversion for example). 

Theory 

In this section, the general theory for ARD will be 
introduced, and its application formulas for seismic 
deconvolution will be presented. 

ARD applied to geophysics 

Many geophysical problems may be cast into or 
approximated by a linear system, with gaussian noise. For 
example, given an input vector 𝑟, and an output vector 𝑠, 

with the linear transformation 𝐺, one can write: 

 𝑠 = 𝐺𝑟 + 𝜖 

𝜖 ∼ 𝒩(𝜖|0, S) 
(1) 

Where 𝑆 is the covariance matrix of the measurement 
noise, and is usually assumed to be diagonal and uniform 
(independent and identically distributed noise). In this 
work, we will make no such assumption. 

For seismic 1D convolutional model the matrix 𝐺 is a given 
Toeplitz matrix, which represent the convolution of the 
input reflectivity trace r with the estimated seismic wavelet. 
The prior probability over r is defined by: 

 
𝑝(𝑟)  = 𝒩(𝑟|0, 𝐴−1) (2) 

The ARD assumption is that the prior precision matrix 𝐴 is 
diagonal, with independent entries: 
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𝐴 = [

𝜆1 0
0 𝜆2

… 0
… 0

… …
0 0

… …
… 𝜆𝑁

] = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑁)

= 𝑑𝑖𝑎𝑔(𝜆) 

(3) 

In a maximum a posteriori (MAP) approach, one is 
interested in finding the vector r which maximizes the 
posteriori probability 𝑝(𝑟|𝑠, 𝜆, 𝑆): 

 𝑝(𝑟|𝑠, 𝜆, 𝑆) =
𝑝(𝑠|𝑟, 𝑆)𝑝(𝑟|𝜆)

𝑝(𝑠|𝜆, 𝑆)
 (4) 

The above maximization problem is equivalent to 
minimizing the loss: 

 𝑈(𝑟) = (𝑠 − 𝐺𝑟)𝑇S−1(𝑠 − 𝐺𝑟) + ∑𝜆𝑗𝑟𝑗
2

𝑁

𝑗=1

 (5) 

Which is equivalent to a deterministic inversion with 
regularization term. In this setting the best choice of 𝜆 from 
the mismatch point of view is zero (the smaller the 
regularization, the better is the match between measured 
𝑠 and simulated 𝐺𝑟). On the other hand, the smaller 
mismatch usually comes at the expense of unstable 
(noisier) solutions. Figure 1 illustrates this situation for a 2D 
toy example. The Bayesian approach brings a natural way 
of finding the optimal value of the regularization 
hyperparameters 𝜆 that balances mismatch and solution 
quality.  

 

 
Figure 1: Bayesian inversion applied to a 2D toy example for different values 
of the hyperparameter 𝜆1 = 𝜆2 = 0. (left), 1.0 (right), and 20.0 (below). The 
matrix G is singular, so when 𝜆1 = 𝜆2 = 0 there are infinite optimal solutions. 

In a fully Bayesian approach, one is interested in 
characterizing the posterior distribution 𝑝(𝑟|𝑠, 𝜆, 𝑆); and in 

this context, the optimal parameters (𝜆, 𝑆) are obtained by 

maximizing the marginal evidence 𝑝(𝑠|𝜆, 𝑆): 

 𝑝(𝑠|𝜆, 𝑆) = ∫𝑝(𝑠|𝑟, 𝑆)𝑝(𝑟|𝜆)𝑑𝑟
𝑟

 (6) 

The above integral can be regarded as an inner product of 
the functions 𝑓𝑆(𝑟) = 𝑝(𝑠|𝑟, 𝑆) and 𝑔𝜆(𝑟) = 𝑝(𝑟|𝜆). For a 

fixed seismic error matrix 𝑆, the maximum marginal 

evidence is achieved by finding the vector 𝜆 which 

maximizes the projection of 𝑔𝜆(𝑟) over 𝑓𝑆(𝑟). This is neither 

achieved with 𝜆 ≈ 0⃗  (equiprobable distribution over 𝑟) nor 

with 𝜆 → ∞ (distribution of r peaked at the solution 𝑟 = 0⃗ ); 
but there is an optimal non-trivial solution. 

The above integral is not analytical to be computed and its 
derivatives are also not analytical (and they suffer from 
vanishing gradients). For this reason, one can use the 
identity below, which holds for any test distribution 𝑞(𝑟): 

 log 𝑝(𝑠|𝜆, 𝑆) = ℒ(𝑞, 𝜆, 𝑆) + 𝐷𝐾𝐿(𝑞(𝑟)|𝑝(𝑟|𝑠, 𝜆, 𝑆))

≥ (𝑞, 𝜆, 𝑆) 
(7) 

 ℒ(𝑞, 𝜆, 𝑆) = 𝔼𝑞(𝑟) [log
𝑝(𝑠, 𝑟|𝜆, 𝑆)

𝑞(𝑟)
] (8) 

 𝐷𝐾𝐿(𝑞(𝑟)|𝑝(𝑟|𝑠, 𝜆, 𝑆)) = 𝔼𝑞(𝑟) [log
𝑞(𝑟)

𝑝(𝑟|𝑠, 𝜆, 𝑆)
] (9) 

The 𝐷𝐾𝐿 is the Kullback-Leibler divergence and measures 

the discrepancy between the proposed distribution 𝑞(𝑟) 
and the true posterior 𝑝(𝑟|𝑠, 𝜆, 𝑆). It is always greater than 

or equal to zero; equality only holds when 𝑞(𝑟) ≡
𝑞(𝑟|𝑠, 𝜆, 𝑆). 

The ℒ(𝑞, 𝜆, 𝑆) term is known as Evidence Lower Bound and 

maximizing it with respect to 𝑞 is equivalent to minimizing 

the 𝐷𝐾𝐿 term. The EM algorithm (Expectation 
Maximization) consists of optimizing the marginal evidence 
𝑝(𝑠|𝜆, 𝑆) by alternating two optimization steps. It can be 
described in the Algorithm 1: 

Input: seismic trace 𝑠, number of iterations 𝑛𝑖𝑡𝑒𝑟 
Output: optimum reflectivity precisions 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) and 

measurement error covariance matrix 𝑆 

1 Initialize 𝜆0 and 𝑆0 

2 for 𝑖 = 1 𝑡𝑜 𝑛𝑖𝑡𝑒𝑟 do: 

3     E-step: set the test distribution 𝑞(𝑟) = 𝑝(𝑟|𝑠, 𝜆0, 𝑆0) 

4     M-step: maximize the ELBO ℒ(𝑞, 𝜆, 𝑆) in relation to 𝜆 and  

5 𝑆  , fixing 𝑞(𝑟) = 𝑝(𝑟|𝑠, 𝜆0, 𝑆0) 

6     set 𝜆0 = 𝜆 and 𝑆0 = 𝑆 

7 end 
Algorithm 1: Expectation Maximization (EM) algorithm for maximizing the 
marginal evidence probability. 

The posterior distribution of the E-step is developed in 
(Buland and Omre, 2003), and can be written as: 

 

𝑝(𝑟|𝑠, 𝜆0, 𝑆0) = 𝒩(𝑟|�̂�, Λ𝑟
−1) 

�̂� = Λ𝑟
−1𝐺𝑇𝑆0

−1𝑠 

Λ𝑟 = 𝐴0 + 𝐺𝑇𝑆0
−1𝐺 

(10) 

In the M-step, one can ignore the terms which do not 
depend on 𝜆 or 𝑆: 

 

𝜆, 𝑆 = argmax
𝜆,𝑆

𝔼𝑞(𝑟)[log 𝑝(𝑠, 𝑟|𝜆, 𝑆)]

= argmax
𝜆,𝑆

∫𝑝(𝑟|𝑠, 𝜆0, 𝑆0) log 𝑝(𝑠, 𝑟|𝜆, 𝑆)
𝑟

 
(11) 

The solution to the above optimization problem is given by: 

 𝜆𝑖 =
1

[Λr
−1]𝑖,𝑖 + �̂�𝑖

2 (12) 

 𝑆 = 𝐺Λ𝑟
−1𝐺𝑇 + (𝐺�̂� − 𝑠)(𝐺�̂� − 𝑠)𝑇 (13) 

The above equations 10 through 13 are recursive 
equations since they have cyclic dependencies. The 
solution is found, thus by iterative application of these 
equations.  

In practice the seismic noise covariance matrix in Equation 
13 is rescaled at each iteration to match the desired signal 
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to noise ratio, which must be inputted by the expert. The 
reason is that the seismic noise is in the same bandwidth 
as the signal and, therefore, much of the noise is 
indistinguishable from the signal and wouldn´t be correctly 
estimated by Equation 13. As such, the signal to noise 
parameter indirectly controls the sparsity of the solution: for 
higher signal to noise ratio the algorithm will try to match 
each and every seismic event, and the solution will be less 
sparse; for smaller signal to noise ratio, more events will 
be ignored by the algorithm, which will be able, then to yield 
a sparser solution. 

The EM algorithm tries to find the smallest values for the 
vector 𝜆, and by doing that it induces sparsity in the solution 

(if consistent with the matrix 𝐺): the necessary entries of 

the vector 𝑟 will be associated with smaller values 𝜆𝑖, while 
the entries of r which can be set to zero, without 
compromising the measurement mismatch, will be 
associated with high 𝜆𝑖  values, and set to approximately 
zero after some iterations. Figure 2 exemplifies the 
deconvolution of a seismic trace in the ARD formalism: the 
measured seismic equals the true seismic plus a coloured 
noise; the ARD solution has a good match with the true 
reflectivity trace, is sparser than the conventional 
deconvolution with similar seismic mismatch. Figure 3 
compares the estimated and actual seismic noise 
covariance functions and shows that they are similar. 

 
Figure 2: Application of the ARD formalism to deconvolve a seismic trace. 
It can be noted that the solution is sparse, and it has a good match with the 
measured seismic. An inversion with 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑁 = 10−4 resulted in 
a not sparse solution with the same mismatch level. 

 
Figure 3: Covariance function of the seismic noise as a function of time lag. 
There is a good match between the estimated and modeled error structures. 

ARD for multistack deconvolution 

In a multistack deconvolution, the matrix 𝐺 is a block-
diagonal matrix, where each block is the Toeplitz matrix 
associated with each stack respective wavelet. We would 
like to induce sparsity, without compromising correlation 
between the different stack reflectivities, since their 
correlation is a direct consequence of the rock physics 
correlation between the different elastic properties. 

The way to do that is to elaborate more on the structure of 

the prior precision matrix 𝐴. Say, we choose 𝐴 to be: 

 𝐴 = 𝐴𝜃 ⊗ 𝐴𝑡 
(14) 

 𝐴𝜃 = 𝑑𝑖𝑎𝑔(𝜆𝜃1, 𝜆𝜃2, … , 𝜆𝜃𝐹) = 𝑑𝑖𝑎𝑔(𝜆𝜃) (15) 

 𝐴𝑡 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑁) (16) 

Where ⊗ is the kronecker product, 𝐹 is the number of 

stacks, and 𝑁 is the number of trace samples. The above 

equations mean that a sample at position 𝑖 and stack 𝑗 has 

precision equals to 𝜆𝜃𝑗𝜆𝑖. This means that the matrix 

𝐴𝜃  controls the weight of each stack in the solution and is 
shared among all samples. Since each reflectivity trace is 
important to explain its correspondent seismic stack trace, 
the optimized 𝐴𝜃 will not induce sparsity, since it would 
mean to zero a whole reflectivity trace. Most importantly, 
equations 14 through 16 imply that if a sample is not 

important to explain the output seismic gather, then 𝜆𝑖 ≫ 1, 

and therefore, all stack reflectivies will have 𝜆𝜃𝑗𝜆𝑖 ≫ 1, 

meaning that the sparsity will be shared across the 
different stack reflectivities. 

The EM algorithm, together with the above prior precision 
matrix assumption is what we will refer to as the 
simultaneous sparse deconvolution (SSD) formalism. 

Results 

We will show the application of the SSD formalism to both 
synthetic and a real case example. The SSD formalism will 
be compared to the application of the ARD approach 
independently to each stack, which we will refer to as 
independent sparse deconvolution (ISD). 

Synthetic case 

We have created a sparse reflectivity trace by sampling 
from a Gaussian-Bernoulli process (sampling a random 
white noise and multiplying it by a binary random trace with 
0.1 probability to be equal to 1). We have derived elastic 
reflectivity traces (P, S and density) proportional to this 
initial reference reflectivity and guided by linearized rock 
physics relations. The simulated stacks correspond to the 
reflection angles of 0, 15 and 30 degrees (Near, Mid and 
Far respectively), and their respective reflectivities were 
computed using Aki-Richards equations. The wavelets 
were modelled as butterworth filters with the same low-cut 
ramp (5Hz-10Hz) but decreasing highcut ramps: 50Hz-
80Hz for the Near stack, 30Hz-50Hz for the Mid stack, and 
20Hz-40Hz for the Far stack. A colored noise with the 
same power spectrum as the wavelets was added such 
that the signal to noise ratio equals 20. 

Figure 4 shows the deconvolution results for both ISD and 
SSD formalisms. It can be seen that the ISD has no one-
to-one correspondence between spikes across the 
different stacks and no alignment is guaranteed, whereas 
the SSD has aligned spikes and better match with the true 
reflectivities. Since ARD is a fully Bayesian formalism, 
Figure 4 also illustrates the 80% confidence interval of the 
reflectivities for the SSD case. 
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Figure 4: Comparison of ISD and SSD results. Each plot represents the 
deconvolution of a seismic stack (0, 15 and 30 degrees). The independent 
deconvolution (red traces) shows no one-to-one correspondence between 
the spikes across the different stacks, and no alignment is guaranteed. The 
simultaneous deconvolution (green traces) shows better correlation 
between spikes in different stacks, and better match with the true reflectivity 
traces. For the SSD case, the 80% confidence interval is also displayed.  

Real Case 

The real case example was taken from an offshore 
seismic. The wavelets were calibrated from nearby wells 
(although statistical wavelets could also be used). The 
signal to noise ratio was qualitatively calibrated 
respectively as 5, 5, 2, 1 for the Near, Mid, Far and Ultra 
Far stacks (alternatively, those values can be estimated 
from seismic to well tie), meaning that the Far and Ultra Far 
stacks are much more deteriorated by noise than the Near 
and Mid. 

A first comparison between the ISD and SSD approaches 
is illustrated in Table 1, which presents the correlations 
between different reflectivity stacks. 

 
Table 1: Correlation coefficients between the different reflectivity stacks for 
the SSD (green) and for the ISD (orange) cases. It can be noticed that the 
SSD correlation coefficients tend to have higher values. 

Figure 5 compares the deconvolution results for a random 
trace within the seismic volume. It confirms visually that the 
SSD approach yields more aligned reflectivity traces.  

Visual analysis of the 80% confidence intervals in Figure 5 
shows a tendency of increasing uncertainty from the near 
stack (7 degrees reflection angle) to the ultra-far stack (36 
degrees reflection angle).  

Figure 5 also shows some misalignment issues in the real 
seismic data, for example, around 5860 ms. These 
misalignments impact the stability of the SSD solution: the 
amplitude of the reflectivity spikes is bigger for the far and 
ultra-far angle stacks, and they tend to present a dipole-
like behavior aspect at the misaligned seismic events. 

Figure 6 illustrates SSD on a real seismic line. The 
misalignment issues between Near and Ultra-far stacks is 
clear, but still there is great structural conformity between 
Near and Ultra-far reflectivities as can be seen from the 
sections. 

 

 
Figure 5: Result of the deconvolution on a single trace of the real seismic 
data. 

 
Figure 6: SSD inversion results. (a) Near stack seismic. (b) Ultra-far stack 
seismic. (c) Near reflectivity. (d) Ultra-far reflectivity. 

Conclusions 

The presented SSD (Simultaneous Sparse Deconvolution) 
technique developed here is based on the ARD formalism, 
together with a specific structure in the prior precision 
matrix, which couples the sparsity of different reflectivity 
traces. It has been shown, both in synthetic and real case 
examples, that the SSD technique enforces co-localization 
between spikes, resulting in more accurate results and 
better correlation between the resulting reflectivity traces. 

(b) 

(c) 

(d) 

(a) 
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