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Abstract

Truncated Newton full-waveform inversion is an attractive
alternative to conventional gradient-based optimization
algorithms. This method accounts for the Hessian within
the inversion, however, it is implemented in a “Hessian-
free” fashion, without explicit calculation or storage of
the Hessian matrix. At each iteration, we obtain
the search direction through a conjugate-gradient (CG)
solution of the Newton linear system, which requires
only evaluations of Hessian-vector products. Due to
the additional cost associated with inner CG iterations,
it is indispensable applying a preconditioning strategy
on CG algorithm to improve its convergence, reducing
the number of CG iterations. In this work, we study
two preconditioned CG schemes. We propose a
scheme based on model reparameterization that adopts
a preconditioner operator that combines smoothness
and the illumination compensation effect of pseudo-
Hessian. We also investigate a more conventional
preconditioning scheme that uses only the pseudo-Hessian
preconditioner. The numerical experiments show that
preconditioning using model reparameterization combining
pseudo-hessian compensation followed by a smoothing
outperforms the more conventional preconditioning using
exclusively pseudo-Hessian operator.

Introduction

Full-waveform inversion (FWI) is recognized as a powerful
tool to estimate high-resolution velocity models of the
subsurface by iteratively minimizing the misfit between the
observed and synthetic seismic data (Virieux and Operto,
2009). This nonlinear optimization problem is commonly
solved through first-order gradient-based algorithms, such
as the steepest-descent and nonlinear conjugate gradient
methods, or the L-BFGS quasi-Newton algorithm.

Recently, second-order optimization algorithms, as the
truncated Newton and truncated Gauss-Newton methods,
have been explored in FWI (Pan et al., 2017; Matharu
and Sacchi, 2019; Liu et al., 2020). These approaches
use the gradient and Hessian of the misfit function in
the inversion. The Hessian operator has the potential
to improve the quality of the model estimation and
the convergence, refocusing the information on poorly

illuminated parameters. In addition, it better account
multiscattered wavefields, providing benefits when highly
contrasted media are investigated (Métivier et al., 2017).

The truncated Newton and truncated Gauss-Newton
method for FWI has been developed based on the second-
order adjoint state formulation (Fichtner and Trampert,
2011; Métivier et al., 2017). At each inversion iteration,
the model update is obtained by approximately solving
the Newton linear system using a matrix-free conjugate-
gradient (CG) algorithm. Thus, only the action of the
Hessian operator on an arbitrary vector (i.e., Hessian-
vector product) is required, instead of forming the Hessian
operator explicitly.

Due to the high computational cost of the evaluation of the
Hessian action, it is important to improve the convergence
of the CG algorithm, in order to reduce the number of CG
iterations. This can be achieved by applying an effective
preconditioning strategy on CG algorithm. Preconditioning
makes the problem better conditioned, and consequently,
it can improve the convergence significantly (Nocedal and
Wright, 2006).

In this study, we investigated two preconditioning strategies
for truncated Newton and truncated Gauss-Newton FWI.
First, we analyze a more conventional preconditioned
CG scheme (Golub and Van Loan, 2013), in which we
use a pseudo-Hessian preconditioner (Shin et al., 2001).
Secondly, we develop a preconditioned CG scheme based
on model reparameterization (Harlan, 1995), in which
we adopt as preconditioner an operator that combines
smoothness and the illumination compensation effect of
pseudo-Hessian. The numerical examples compare the
performance of both schemes. We find that preconditioning
based on model reparameterization outperforms the more
conventional preconditioning strategy that uses only the
pseudo-Hessian operator.

Method

Acoustic full-waveform inversion attempts to obtain
physical parameters of the subsurface by minimizing the
misfit between observed and modeled wavefields using the
wave equation

1 9%p(t,x;%s)

c(x)? ot2 7V2p(t7X;XS) =s(t;%s) , (1)

where ¢(x) is the velocity model, p(z,x;xs) is the pressure
field and s(r;x5) represents the source pulse injected at
position xs.

The inverse problem consists in finding the model
parameter m that minimizes the least-squares misfit

Seventeenth International Congress of the Brazilian Geophysical Society



PRECONDITIONED TRUNCATED NEWTON FWI 2

functional
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where p° (1,x.;%s) is the observed wavefield at receivers
position x, and p(¢,xr;xs) is the modeled wavefield at
position x,. We consider as model parameterization the
squared slowness m = —L.
c(x)

The Newton optimization approach is derived from
the second-order Taylor series expansion of the misfit
functional

J(m+Am) = J(m) + Am'g(m) + %AmTH(m)Am, 3)

in which g(m) = 597{1 denotes the gradient and H(m) denotes
the Hessian matrix of misfit functional. The search direction
Am is obtained by solving the linear system

H(m)Am = —g(m). (4)

Thus, the solution that minimizes equation (2) is iteratively
computed updating an initial model along a direction Am:

mt = m*~! + y*AmF, (5)

where k denotes the iteration number and y is a scalar
step length computed through a line-search method that
satisfies the weak Wolfe conditions (Nocedal and Wright,
2006).

The truncated Newton method computes an approximate
solution of the linear system (4) using a conjugate-gradient
(CQG) algorithm. This approach requires only the action of
the Hessian operator on an arbitrary vector in the model
space (i.e., Hessian-vector product), instead of forming the
Hessian operator explicitly.

In order to implement second-order optimization
algorithms, we need the gradient of the objective
function (2) and the action of the Hessian operator on an
arbitrary vector. Using the adjoint-state method (Plessix,
2006; Chavent, 2010) we can compute the gradient by
solving firstly the forward wave equation (1) and then the
adjoint equation backward in time

1 92A(t,x;xs)

C(X)2 o2 ~V2A (t,%;%s) = e (t,Xr;Xs) (6)

where A(t,x;xs) is the adjoint wavefield and the source
term, e(t,x,;%Xs) =Y, [p"bs(t,x;xs) —p(t,x;xs)] S(x—x¢), Is
the data residual. Having computed the wavefields, the
gradient with respect to the model parameter m (squared
slowness) is obtained by cross-correlation

92 p(t,x;Xs)

T
g(m)=Y /O drA (o, xixg) S 7)

The Hessian-vector product can be derived through the
second order adjoint-state method (Fichtner and Trampert,
2011). Constructing the Hessian-vector product H(m)u
requires the computation of four different wavefields: the
incident field p(s,x) by solving equation (1), the adjoint
field A(z,x) by solving equation (6), and two scattered

wavefields, TI'j(r,x) and I';(¢,x), by solving additional
forward and adjoint problems. The scattered forward field
I';(¢,x) is the solution of

1 92T(,x;%s)
c2(x) ot?

9?p(t,x;Xs)

7V2F2(17x;x5) = —u(x) 7 , (8)

where u(x) represents the arbitrary vector u in the model
space, note this acts as scattering source. The scattered
adjoint field I'; (¢, x) is obtained by solving backward in time

1 9% (r,x;Xs)
c2(x) ot2

92A(1,X;Xs)
or?

— V2L (1,%:Xg) = — (u(x)

+Z§(xfxr)l“2(t,x;xs)> .

-
9)
Using the computed wavefields, the Hessian-vector
product with respect to squared slowness model m is given
by
T 82 ‘x.
H(m)u:Z{/ dtﬂ(t,x;xﬂip(t’;’xj)
5 /0 dt (10)
r 92A(1,x;Xy)
r xS
+./0 diTo(1,%;Xy) 32
The computational cost of this operation is twice the
gradient cost, since two extra wave-propagation problems
are solved.

Algorithm 1: full Newton Hessian-vector product
computation

fort =1 to Nt do
update incident field p(,x);
update scattered field I'» (7, x);

end

forr =Nt to1 do

update adjoint field A(z,x);

update scattered field I'; (¢,x);

reconstruct fields p(¢,x) and I'»(z,x);

build the Hessian-vector product H(m)u in
time-domain;

end

Alternatively, truncated Gauss-Newton method is based on
an approximation of the full Hessian operator. The Gauss-
Newton Hessian approximation neglects the second-order
terms of full Hessian, furthermore, it is always semipositive
definite, whereas the full Hessian may not be semipositive
definite (Métivier et al., 2017). In practice, this approach
has the advantage of having a lower computational cost
compared to truncated Newton method, as the action of
Gauss-Newton Hessian requires the computation of three
different wavefields: the incident field p(z,x) by solving
equation (1), the scattered field I';(¢,x) by solving equation
(8), and the scattered field I' (¢,x) by the solving backward
in time

1 92T (r,x;%s)
2(x) 012

— V2T (,%;%g) = fZS(Xfxr)Fg(t,x;xs).
’ (1)
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Then the Gauss-Newton Hessian-vector product can be
given by

T 82 t7 , S
HGN(m)u:Z/O dtl"l(t,x;xs)%. (12)

Note that the expression for the Hessian-vector product
reduced to only one term, therefore, there is no need
to recompute field I'»(z,x;x;) for the cross-correlation as
in expression (10). Furthermore this operation does not
require the computation of adjoint field A(z,x).

Algorithm 2: Gauss-Newton Hessian-vector product
computation

forr=1toNt do
update incident field p(z,x);
update scattered field I';(¢,x);

end

for:r =Nt to1do

update scattered field 'y (7,x);

reconstruct fields p(z,x);

build the Hessian-vector product Hgy (m)u in
time-domain;

end

Solving the linear system by preconditioned CG algorithm

The conjugate-gradient (CG) method can be used to solver
the linear system which determines the search direction
Am. However, the Hessian matrix is often ill-conditioned
and it is not a positive-definite operator. In order to
ensure the positive-definiteness and stabilize the solution,
we apply a damping term to the Hessian in eq. (4), this
leads to a damped linear system

(H+AD)Am = —g, (13)

where A is a scalar damping parameter, which ideally
should be the smallest value that ensures the stability of the
solution; D represents a weight matrix, which the simplest
choice is the identity matrix I. The solution to system
of equations (13) corresponds to the minimization of a
quadratic function with a penalty term

1
¢(Am) = 5 Am"HAm + Am'g + %AmTDAm. (14)

The CG method may suffer from slow convergence. In
order to improve the conditioning of linear system and
accelerate the convergence, we can use preconditioning.
Commonly, preconditioning is introduced by multiplying
both sides of the linear system by a suitable preconditioner
P (Golub and Van Loan, 2013). Choosing D =1 in equation
(13), the preconditioned linear system can be written as

P(H+AI)Am = —Pg. (15)

For the effectiveness of this approach, the operator P
is chosen so that the condition number of PH is less
than the condition number of H. Ideally, P should be an
approximation of the inverse Hessian, so one convenient

preconditioner is based on pseudo-Hessian operator (Shin
et al., 2001) that can be cast as

jf(m):;/onz (‘92”(5;;‘;"5))2. (16)

The pseudo-Hessian has shown to be useful in FWI
since it is widely used to preconditioning gradient-based
algorithms.  Using pseudo-Hessian we can obtain a
diagonal approximation of the inverse Hessian

. 1
PPH:dlag(%+9max{jf})’ (a7

where 6 € [0,1] is a threshold parameter that is chosen to
avoid division by very small numbers.

Another approach to preconditioning a linear system
is based on model reparameterization (Harlan, 1995;
Claerbout and Fomel, 2008). From linear system with
damping term (13), we can introduce preconditioning via
a change of variable

Am =Pv, (18)

where v is a new variable and P is the preconditioner.
Choosing as weight matrix D = P~!, we get a alternative
preconditioned linear system

(HP+AI)v=—g. (19)

In this approach, the preconditioner can be chosen to
enforce a desirable behavior in the solution.

We investigate the effect of two preconditioning strategies
in truncated Newton and truncated Gauss-Newton FWI. In
the first investigated strategy, we apply the pseudo-Hessian
preconditioner, PP¥ | to the linear system (15). Accordingly,
the search direction is obtained using the preconditioned
CG algorithm displayed in Algorithm 3. This represents
a more conventional preconditioning scheme applied to
truncated Newton FWI (Pan et al., 2017; Métivier et al.,
2017).

The second preconditioning strategy estimates the search
direction by solving the linear system (19). In this case, we
propose as preconditioner a combined operator

PS =SPH (20)

in which the pseudo-Hessian preconditioner PP# acts to
compensate for subsurface illumination and S behaves like
a smoothing filter that acts to enforces smoothness in
the search direction. As shown by Fomel and Claerbout
(2003), smoothing preconditioning can provide faster
convergence at early iterations by focusing on the low-
wavenumbers of the expected solution of the linear system.
Algorithm 4 shows the corresponding preconditioned CG
scheme.

Numerical examples

In this section, we apply truncated Newton (FN) and
truncated Gauss-Newton (GN) FWI on a simple Gaussian-
anomaly model, followed by a modified Marmousi Il model.
We also illustrate the effect of two different preconditioning
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Algorithm 3: Preconditioned CG scheme to solve
P (H+AI)Am = —Pg

Input:

current model m;

gradient g(m);

pseudo-Hessian preconditioning operator P = PPH;
damping parameter 1;

Output: search direction Am

Initialization:

M =0,r'=—g d =pPr!, j=1;

while j < Nyox & € > €y, dO

s/ =H(m)d’

. (x/ Pr/)
O = WA

AmJ = Am/~! 4 ad/
=1/ — o (s/ + 1d7)

_ <ri+l,Pr/+1>
B - (r/Pr))
d/ ! =Pritl 4 BdJ
o I
llel®
j=Jj+1
end

Algorithm 4: Preconditioned CG scheme to solve
(HP+AD)v=—g
Input:
current model m;
gradient g(m);
combined preconditioning operator P = SPPH;
damping parameter 1;
Output: search direction Am
Initialization:
V=0,rl=d =—-gj=1;
while j < Nyux & € > €5, dO
s/ = H(m)Pd/
_ (] /)
(W) +A{d a7y
v/ =v/i L ad/
v/t =1/ — o (s/ +1d7)
<rj+l’rj+]>
(r/x/7)

o

schemes (Algorithm 3 and Algorithm 4) in these methods
and compare the results with the steepest-descent (SD)
and L-BFGS method. In the experiments, the stopping
criteria for the CG algorithms were Ny, = 10 and &,,;, =0.1.
The step lengths y were computed through line-search
algorithm from Moré and Thuente (1994).

The first example is a Gaussian-anomaly model (Fig. 1a)
that consists of 51 x 100 grid, with a grid interval of 10

m in the horizontal and vertical directions. The data set
were modeled using 49 shots with an interval of 20 m and
a depth of 20 m; 100 receivers were arranged from 10 to
1000 m every 10 m at the depth of 20 m. The source
function was a Ricker wavelet with a dominant frequency
of 10 Hz. The initial model was a constant velocity of 2000
m/s.

Figure 1 shows the models recovered in 40 iterations with
SD (Fig. 1b), L-BFGS (Fig. 1c), FN using preconditioning
schemes described in Algorithm 3 (Fig. 1d) and Algorithm
4 (Fig. 1e), GN using preconditioning schemes described
in Algorithm 3 (Fig. 1f) and Algorithm 4 (Fig. 1g). We
can see that the recovered anomalies with second order
optimization methods, FN and GN, are closer to the true
model than results obtained with SD and L-BFGS.

The convergence rate and computational cost of these
optimization algorithms are analyzed through two types of
convergence curves, one in terms of nonlinear iterations
and another in terms of direct problems solved. Note
that gradient computation requires the solution of two
direct problems, full Hessian action and Gauss-Newton
Hessian action requires the solution of four and three direct
problems, respectively. In addition, for each nonlinear
iteration of FN and GN, there are inner CG linear iterations.

Figure 2a shows that FN and GN have considerably higher
convergence rates than SD and L-BFGS. Nonetheless,
Figure 2b illustrates the high computational cost associated
with these second-order optimization methods. Comparing
the performance of two preconditioning schemes applied to
FN and GN, we note that preconditioning based on model
reparameterization (Algorithm 4) has a better convergence
rate and lower computational cost. We also observe that
GN experiments provide better performance compared to
the FN experiments. The second example corresponds to
a portion of Marmousi Il (Martin et al., 2002). The model,
shown in Figure 3a, consists of 151 x 401 grid with a grid
interval of 10 m in the horizontal and vertical directions.
The data set was modeled using 49 shots with an interval
of 80 m and a depth of 10 m. A total of 401 receivers were
arranged from 0 to 4000 m every 10 m at the depth of 10 m.
The source function was a Ricker wavelet with a dominant
frequency of 8 Hz.

Figure 3b shows the initial model, which is a smoothed
version of the true model. We compare the inversion
results obtained after 20 nonlinear iterations with L-BFGS
(Fig. 3c), FN using preconditioning scheme described in
Algorithm 3 (Fig. 3d) and Algorithm 4 (Fig. 3e), GN using
preconditioning schemes described in Algorithm 3 (Fig. 3f)
and Algorithm 4 (Fig. 3g). Note that the quality of the
recovered models obtained with all methods is similar.

We compare the behavior of optimization methods through
convergence curves shown in Figure 4. We can
see that after 20 iterations the data misfit for FN
and GN is significantly smaller compared to L-BFGS.
The FN experiments show a slightly better convergence
rate compared to the GN experiments, however, the
computational cost of FN is higher.

The performance difference between preconditioning
schemes is more evident in terms of number of direct
problems solved (see Fig. 4b). We note that
the preconditioning based on model reparameterization
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(Algorithm 4) provides lower computational cost for both
FN and GN.

Conclusions

We investigate preconditioning strategies in truncated
Newton and truncated Gauss-Newton FWI. In these
methods, the search direction is determined by solving
the Newton linear system via CG algorithm. We
present two preconditioning strategies that lead to different
preconditioned CG schemes (Algorithm 3 and Algorithm 4).

Inversion experiments were carried out on a Gaussian-
anomaly model and a modified Marmousi Il model. The
results obtained with second-order optimization methods
(truncated Newton and truncated Gauss-Newton) were
compared with gradient-based methods like steepest
descent and L-BFGS. The experiments demonstrated
that second-order methods provide considerably faster
convergence, but they are computationally expensive. This
is due to the additional cost of inner linear CG iterations
per outer nonlinear iteration. Furthermore, the truncated
Gauss-Newton appears to be more advantageous due
to its lower computational cost compared to truncated
Newton.

Regarding the investigated preconditioning strategies, the
convergence curves show that the preconditioning scheme
based on model reparameterization (Algorithm 4) provides
lower computational cost since the number of direct
problems solved is smaller compared to another scheme
(Algorithm 3). This indicates a reduced number of inner
CG iterations. Hence, our numerical experiments show
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< 2
c [ 8
a

500 15

b Distance(m) Distance(m)

(b) o 500 1000 km/s (c)o 500 1000 kmys
0 25 0 2.,
E £
£ . 2 g e 2
= (=3
a8 a8

500 15 500 15

Distance(m) Distance(m)

(d)g 500 1000 km/s (&)o 500 1000 km/s
0 25 0 2.5
E £
g LI 2 £ . » 2
a8 8

500 15 500 15

Distance(m) Distance(m)

o 500 1000 kmys (9o 500 1000 km/s
0 25 0 2.5
£ £
= L 2 £ LI 2
o o
a a

500 15 500 15

Figure 1: (a) True Gaussian-anomaly model. Models
recovered in 40 iterations with (b) SD, (c) L-BFGS, FN
using preconditioning schemes from (d) Algorithm 3 and
(e) Algorithm 4, GN using preconditioning scheme from (f)
Algorithm 3 and (g) Algorithm 4.
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Figure 2: Convergence curves for SD, L-BFGS, FN and
GN. Preconditioning schemes summarized in Algorithm 3
and Algorithm 4 are referred to as PCG-1 and PCG-2,
respectively.
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Figure 3: (a) Modified Marmousi Il model.(b) Initial model.
Inversion results obtained with (c) L-BFGS, FN using
preconditioning schemes from (d) Algorithm 3 and (e)
Algorithm 4, GN using preconditioning scheme from (f)
Algorithm 3 and (g) Algorithm 4.
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Figure 4: Convergence curves for L-BFGS, FN and
GN. Preconditioning schemes summarized in Algorithm 3
and Algorithm 4 are referred to as PCG-1 and PCG-2,
respectively.

that preconditioning based on model reparameterization
clearly outperforms the more conventional pseudo-hessian
preconditioning on truncated Newton FWI.
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