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Abstract   

Since the last century, research into the phenomenon of 
attenuation of seismic waves has been much discussed. 
This article describes a summarized version of the 
evolution of the study of attenuation mechanisms and 
their consequences and application in geophysics. A brief 
bibliographic review with examples and practical 
applications of the phenomenon of attenuation of seismic 
wave propagation is presented. 

Introduction 

 
The theory and application of seismic modeling are very 
relevant to the process of seismic interpretation and also 
in the development of inversion algorithms. The 
characteristics of the real materials of the layers that form 
the planet Earth are of anisotropy and anelasticity in 
general. It is known that the attenuation effects alter the 
amplitude and phase of  recorded seismic waves. Seismic 
attenuation is an intrinsic property of rocks causing 
dissipation of energy as seismic waves propagate through 
the subsurface. It results in the decay of amplitude of the 
seismic waves. Attenuation is related to velocity 
dispersion. The energy of seismic waves is conserved 
only if it travels through a perfectly elastic medium. 
Propagating seismic waves loose energy due to: 
Geometrical spreading (wavefront radiating from a point 
source is distributed over a spherical surface of 
increasing size), Absorption (anelastic attenuation), 
Scattering (elastic attenuation). The quality factor Q is a 
parameter that measures how much the medium 
attenuates seismic waves. 1 / Q as a dissipation factor 
was introduced by Knopoff (Knopoff, 1958) and is similar 
to what was used in electrical circuit theory. Zener (Zener, 
1958) was also one of the first to investigate hidden 
variables and memory effects similar to the theory of 
memory variables we have today and is the most 
common approach to viscoelastic equations (Carcione et 
al., 1988). The viscoelastic theory parameterized the Q 
factor and is based on rheological models where each 
one presents unique aspects in the frequency domain (Liu 
et al., 1976; Kjartansson, 1979; Blanch et al. 1995; Moczo 
and Kristek, 2005; Moczo et al., 2007; Vasheghani FLR 
Lines, 2009; Carcione JM, 2014). The Q factor is much 
discussed today and due to its complexity, its own 
taxonomy has been created  in several applications (Igor 
Morozov and Amin Baharvand Ahmadi, 2015). The 
scientific community has been concerned for decades 
with the problem of incorporating the phenomenon of 
attenuation in the time domain modelling, since all 

laboratory research has shown a strong dependence on 
the frequency and the phenomenon of seismic wave 
propagation carries the entire  frequency content. 
 
Viscoelastic Theory 

 
The mechanical response of a viscoelastic material body, 
subjected to stress variations, is non-instantaneous; and 
its time response characterizes its viscoelastic behavior. 
(Carcione J. M., 2014). The response of the medium to 
stress occurs with a delay due to the viscous behavior of 
the material: the material has memory. To interpret the 
viscoelastic behavior one usually uses springs and 
dashpots. The differential representation that describes 
the behavior of models consisting of springs (Hookeanas) 
and dampers (a viscous part Newtonian)  (T. Alfrey and 
P. Doty, 1945; Christensen, RM, 1982) are given in 
equations 1 and 2 for elastic and viscous materials, 
respectively: 

σij=  cijklεkl         (1)  and σij= ψijkl∗
𝛛𝜺𝒌𝒍

𝝏𝒕
     (2),  where ψijkl is 

relaxation-tensor.  
In the Maxwell model, one spring and one dashpot are 
connected in series. In the Kelvin-Voigt model, one spring 
and one dashpot are connected in parallel and the 
Standard Linear Solid, considers two sprins and one 
dashpot (figure 1). The mechanism of evanescent 
memory (memory variables: Day and Minster, 1984; 
Emmerich and Korn, 1987) can be described by the 
equations below, where stresses are related in time with 
the strains and vice versa. 

σ(t) = ψ ∗
𝛛𝛆

𝛛𝐭
  (3),     ε(t) = χ ∗

𝛛𝛔

𝛛𝐭
  (𝟒) 

where ψ is the relaxation function and χ is the fluency 
function (Creep compliance). 
From theory we can write: 
σ(t) = M(t)∗ε(t)  (5) 

and in the frequency domain σ(w) = M(ω)ε(ω). Where 
𝛛𝛙(𝐭) 

 𝛛𝐭
 = M(t) is the complex modulus and its Fourier 

transform is: 
 
 Memory Variable 

Be ψ (t) = f(t)H(t) where H(t) is Heaviside step function 

then σ(t) =ψ(t) ∗
𝝏𝜺

𝝏𝒕
=

𝝏𝛙(𝐭)

𝝏𝒕
∗ 𝛆(𝐭) = ((

𝛛𝐟(𝐭)

𝛛𝐭
𝐇(𝐭) + 𝐟(𝐭)𝛅) ∗

𝛆). 

σ(t)=ψ(t)∗
𝝏𝜺

𝝏𝒕
=

𝝏𝛙(𝐭)

𝝏𝒕
∗ 𝜺(𝒕) =

𝝏𝒇(𝒕)

𝝏𝒕
𝐇(𝐭) ∗ 𝛆 + 𝐟(𝟎)𝛆 = 𝐞 +

𝐟(𝟎)𝛆. 

Where e =
𝝏𝒇(𝒕)

𝝏𝒕
𝐇(𝐭) ∗ 𝜺 and the e time derivative is  

𝛛𝐞

𝛛𝐭
=  

𝛛𝟐𝐟(𝐭)

𝛛𝐭𝟐 𝐇(𝐭) ∗ 𝛆 +
𝛛𝐟(𝟎)

𝛛𝐭
𝛆. (6) 

This last equation results in the equations of memory 
variables of the viscoelastic models (Carcione et al., 
1988). Each viscoelastic model has a specific M(t)/M(ω), 
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which describes the model behavior in time/frequency, 
respectively. The usual modeling process goes toward 
the discretization of the convolution integral. The quality 
factor is defined: 

Q(ω)= 
𝐑𝐞 [𝐌 (𝛚)]

𝐈𝐦[𝐌 (𝛚)]
. (7) 

 

 

Figure 1: Maxwell, Kelvin-Voight and Standard Linear 
Solid (Viscoelasticity - an overview | ScienceDirect Topics 
sciencedirect.com). 

 

3.2 The Boltzmann Superposition Principle  

The Boltzmann superposition principle says that the 
effects of the mechanical history of linear materials are 
linearly additive. That is, a linear superposition of stresses 
leads to a corresponding linear superposition of 
deformations and vice versa. The mathematical 
formulation of this principle is the constitutive relationship 
between stress and strain given by a convolution integral 
and can be applied to the materials with linear behaviour  
(3), (4) and (5). The equations below briefly describe what 
was said earlier. Let it be an arbitrary linear superposition 
of strains and stresses given by: 

ε(t)=  ∑ 𝒃𝒊𝛆𝒊(𝒕)𝒏
𝒊=𝟏   and  𝛔(𝐭) = ∑ 𝐛𝐢𝛔𝐢(𝒕)𝐧

𝐢=𝟏 , 𝒃𝒊 being an 

arbitrary constant independent of time. 

From the convolution relation given in (5) and the 
distributive property of the operator, we have: 

 

𝛔(𝐭) = ∑ 𝐛𝐢𝛔𝐢(𝒕)𝐧
𝐢=𝟏 =  ∑ 𝐛𝐢(𝐌 ∗ 𝛆𝐢

𝐧
𝐢=𝟏 (𝐭)) = 𝐌 ∗

(∑ 𝐛𝐢𝛆𝐢(𝒕)𝐧
𝐢=𝟏 ). (6) 

It is seen that the response to the incremental load is 
independent of that due to other incremental loads. The 
individual sum of the responses, through a series of 
incremental loads, corresponds to the complete load 
history. 

σ(t) =  ∑ ∆𝛔𝒌
𝑵
𝑲=𝟏 (𝒕).  (7) 

 

Method 

 
We used the theory of the mechanics of continuous 
media and a numerical simulation algorithm  based on the 
finite difference method - FDM to simulate the 
propagation of waves (Virieux, J. (1986). The Maxwell 
model was used for the implementation of the algorithm. 
The method to incorporate attenuation through 
viscoelastic models is the memory variables in two-layer 
geologic site (P wave). A two-layer geological model, 
500m deep and 500 m wide, was discretized with grid 
spacing o 5m in both vertical and horizontal directions. 
The wave propagation velocity of the compressional wave 
are 3000m/s and 2300m/s for the upper and lower layers 
respectively. Young’s modulus, shear modulus, and 
Poisson coefficient are shown in figure 2. The shot 
position is at point (250m,230m) and geophones are 
placed along the line z=170m. The three cases analyzed 
considered frequency (of 10 20 and 30 HZ) and a 
constant Q factor equal to 10 and the behavior of a low-
pass filter (Maxwell model) is verified according to 
seismograms in frequency. Results for the elastic case 
are also displayed so that one can see the representative 
change between simple elastic and viscoelastic analyses. 
In the two-layer geological model, the behavior of a low-
pass filter (Maxwell model) is verified according to 
seismograms in frequency. The equation of motion in the 
elastic case was discretized in conjunction with the 
equation of memory variables (6). 

 

 𝛒
𝛛𝟐𝒖𝒊

𝛛𝐭𝟐 = ∇. 𝝈𝒊𝒋 +  𝑓𝑖 (8) 

 

In this next example it is shown the effect of attenuation of 
the propagation of SH wave in a anisotropic viscoelastic 
media. We consider that the plane (x, z) is the 
symmetrical plane of a monoclinic environment. 
Considering the transversal plane, it implies that the only 
non-zero deformations are the components 𝝈𝟏𝟐 and 𝝈𝟐𝟑. 

 
Here are some steps to obtain the 3-D equation of 
motion, the formulation of the displacement of the SH 
motion equation is given by Euler Equation: 

 
𝛛𝒗𝟐

𝛛𝐭
= 𝛒−𝟏 (𝝏𝟏𝝈𝟏𝟐 + 𝝏𝟑𝝈23 + 𝑓2) (9) 
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The stress-strain relation: 
 
𝝈𝟒 =  𝑐44𝑒4 + 𝑐46𝑒6 + 𝑐44𝑒23 

                                                (10) 
𝝈𝟔 =  𝑐46𝑒4 + 𝑐66𝑒6 + 𝑐66𝑒12 

 
 

Memory variable equations: 

 
𝜕𝑒23

𝜕𝑡
=  ϕ

2
(0)𝑒23 −

1

𝜏𝝈2
𝑒23 

                                          (11) 
𝜕𝑒13

𝜕𝑡
=  ϕ

4
(0)𝑒13 −

1

𝜏𝝈4
𝑒13 

 

The simulation was performed in a two-layer 

geological model and the elastic constant 𝑐46 is 

given as a function of the other two 𝑐44 and 𝑐66. 

 

For more details on the wave equation that 

describes the behavior of the SH wave are 

found (Carcione J. M., 1997 and 2014). 

 
 

Results 

 
The results are described by the seismograms and 
seismic traces in the figures below and are in accordance 
with the theory described above. The results are in 
accordance with the theory. 

 

 

 
Figure 2: Sesimic Traces at x=250 m and Seismograms at 

the time t= 0.9 s, source frequency 10 Hz and quality 

factor Q=10. a) memory variables. 

 
 

Figure 4: Seismic Traces in x=250 m and Seismograms at 

the time t= 0.9 s, source frequency 20 and 30 Hz 

(respectively), quality factor Q=10 (memory variables). 

 

 

 

 
Figure 5: Seismic Traces in x=250 m (elastic case) and 

Seismograms  at the time t= 0.9 s, source frequency 10, 

20 and 30 Hz. 
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Figure 6: Two-layer geological model with 440 meters in 
both directions. 

 

 

 

Figure 7: Snapshot - displacement   (elastic case), time t= 
0.3 s, source frequency 15 Hz. 

 

 

 

Figure 8: Snapshot  - displacement   (viscoelastic case), 
time t= 0.3 s, source frequency 15 Hz 

 

Conclusions 

 
The incorporation of the attenuation of the medium in the 
propagation of seismic waves is very relevant in seismic 
and seismology. There is a wide variety of approaches to 
incorporate the phenomenon of attenuation in the 
propagation of seismic waves and their applications. This 
is still a problem where new theories may arise. 
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