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Abstract

The mapping of facies is a very important step in the
interpretation and characterization during the exploration
of hydrocarbons, as well as their development. Over the
last few decades, Deep Learning has been considered to
be one of the most powerful tools and has become very
popular in the literature as it can handle a huge amount of
data. Although a variety of machine-learning methods have
been developed to speed up interpretation and improve
prediction accuracy, there still exist significant challenges
in 3D multiclass seismic facies classification in practice.
Besides that, a very wide variety of machine learning
methods have been developed but there are still many
challenges concerning the interpretation of 3D seismic
facies. In this work we applied a convolutional neural
network to predict seismic facies from the Parahika block,
located in the Taranaki Basin, New Zeland, to determine
geologic structures.

Introduction

Seismic facies investigation tries to interpret the
depositional environment and the facies from the seismic
data (Dumay and Fournier, 1988), which is a fundamental
process in hydrocarbon industries. In many companies,
facies are interpreted manually via collaboration among
geophysicists, geologists, and petrophysicists. However,
with 3D the amount of seismic data is considerably large,
which increases the labor and makes the process more
expensive, in addition to increasing the processing time.

Recently, deep learning has become an emerging
subfield of machine learning, benefiting from computational
advances, as well as graphics processing (GPU) and the
concept of big data that consists of working with a very
large amount of data. In this sense, this has enabled a
series of applications, such as computer vision and speech
recognition.

The main advantage of deep learning over traditional
machine-learning methods, such as the support vector
machine, random forest, or any form of shallow artificial
neural network, is its powerful ability for learning features
and hierarchical representations from large sample data
sets in high-dimensional space and for handling arbitrary
nonlinear complexity (Liu et al., 2020). It provide automatic

extraction of the salient feature representation that is most
sensitive for specific tasks of interest. Thus, deep learning
has been applied to several geophysical applications. A
considerable part of machine- and deep-learning methods
used in geophysics applications can be categorized into
supervised classification witch consider label data from
well log or seismic data interpretation.

Although deep learning is quite used in geosciences,
many issues still need to be overcome concerning 3D
facies, including data representation associated network
complexity, limited labeled data for training, imbalanced
facies class distribution, and lack of rigorous performance
evaluation in realistic settings (Liu et al., 2020). In
addition, facies class distribution in the training set is not
necessarily consistent with realistic settings. To address
these challenges, we use a realistic 3D facies model
and the information of geologic interpretation as labels to
perform facies classification from seismic reflection data
with deep neural networks.

Method

Most of the machine and deep Learning supervised
methods, consider labeled and training data from the
well-logging register or/and stratigraphy interpretation from
seismic data, as well as label data provided by an expert
geologist who identifies the geologic facies.
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Figure 1: 3D views of XZ, YZ, and XY slices through labels
(AIcrowd, 2020).

The Figure 1 shows two vertical label slices and one
horizontal label slice identified by an expert geologist
interpreter in 6 facies, as well as its geological description
(AIcrowd, 2020) as follow:

• Basement/Other: Basement - Low signal/nopise; Few
internal Reflections; May contain volcanics in places

• Slope Mudstone A: Slope to Basin Floor Mudstones;
High Amplitude Upper and Lower Boundaries;
Low Amplitude Continuous/Semi-Continuous Internal
Reflectors
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• Mass Transport Deposit: Mix of Chaotic Facies and
Low Amplitude Parallel Reflections

• Slope Mudstone B: Slope to Basin Floor Mudstones
and Sandstones; High Amplitude Parallel Reflectors;
Low Continuity Scour Surfaces

• Slope Valley: High Amplitude Incised
Channels/Valleys; Relatively low relief

• Submarine Canyon System: Erosional Base is U
shaped with high local relief. Internal fill is low
amplitude mix of parallel inclined surfaces and chaotic
disrupted reflectors. Mostly deformed slope mudstone
filled with isolated sinuous sand-filled channels near
the basal surface.

A task like this is generally done by a team of geologists
working in collaboration with specialists who design
the surveys and process the raw data to create the
images. Manual interpretation then is done on workstations
equipped to rapidly display and highlight different features
of the 3D image. Full classification of an image of this
size often requires hundreds of work-hours by a team of
geologists.

Figure 2: Geological 2D map of Taranaki basin including
Parihaka 3D seismic block, represented by black polygon
(Kumar, 2016).

For this work we applied a deep neural network to a
seismic block from the Taranaki basin, Parahika (Figure
2). We used a 3D seismic image from a public domain,
available from the New Zealand government, and compare
how good are accuracy and Loss. In addition to that, we
predicted another data portion from a Taranaki basin. For
this purpose, we used a convolutional neural network.

Supervised Convolutional Neural Network (CNN)

CNN is a kind of deep neural network that uses
convolutional layers to filter input data with a grid-like
topology, such as natural images and time-series data,
for useful information extraction (O’Shea and Nash, 2015).
There are four main operations in the CNN shown in Figure
3:

• Convolutional: preserves the spatial relationship
between pixels by learning image features using small
squares of input data. It takes this name from
a mathematical linear operation between matrices
called convolution.

• Non-linearity (ReLU): The non-linearity can be used
to adjust or cut off the generated output. This layer is
applied to saturate the output or limiting the generated
output.

• Pooling or Subsampling: This is a kind of down-
sampling to reduce the complexity for further layers,
but it does not affect the number of filters.

• Classification (Fully connected layer): The fully
connected layer is similar to the way that neurons are
arranged in a traditional neural network. Therefore,
each node in a fully connected layer is directly
connected to every node in both the previous and in
the next layer.

Figure 3: A simple convolutional neural network (Phung
et al., 2019).

These operations are the basic building blocks of every
Convolutional Neural Network.

Training a neural network is an optimization problem, which
is equivalent to minimizing a predefined loss function,
which measures how good a model is and helps to update
the model parameters during the training process (Liu
et al., 2015). It’s very important to select proper loss
functions for different tasks.

Seismic facies classification is a typical multiclass
classification problem in which the multiclass cross-entropy
loss (equation 1) commonly is used:

L =− 1
N

N

∑
i=1

K

∑
i=1

I(k,yi) logP(yi = k|xi), (1)

where k is the number of classes (the number of facies); N
is the number of training samples; x and yi represents the
input and label of training sample i, I(k,yi) is the indicator
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function that is equal to 1 if and only if sample i belongs to
class k; P(yi = k|xi) is the output probability of the neural
network that sample i belongs to class k calculated from
the output layer through the softmax activation function.

Results

To demonstrate the applicability and performance of the
proposed deep neural networks in 3D seismic facies
classification, we used the seismic data Parahika block
from a public domain, available from the New Zealand
government.

The training and label dataset is a 3D image representation
as an array of 1006× 782× 590 real numbers and integer
numbers, respectively, extracted from Parahika block (red
color, Figure 4).
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Figure 4: View looking down on the XY plane showing how
the training and test data sets fit together spatially. The
two data sets are extractions of a much larger 3D seismic
image of the survey region, which is in the Parihaka block of
the Taranaki Basin of the northwest coast of New Zealand.
The absolute (X, Y) indices in this plot come from the
indexing used as the local coordinate system full seismic
image (adpted from AIcrowd (2020)).

Next, we generate labeled samples along by taking the
seismic interpretation samples made of human-interpreters
who identified 6 such facies to label around the red area
(Figure 4) as input and the associated facies label as
output. Figure 5 shows the facies class distribution. As
shown, the training set consists of 782 labeled samples.
Such a number of diverse labeled samples would allow us
to perform classification using supervised CNNs.

Figure 6 shows the training history using the Dinendra
(2021) coding with a batch size of 8 and a learning rate
of 0.00085. Based on the training history, we choose the
ideal point to stop training at approximately 40 epochs
to minimize the possibility of lost connection, since, all
programming was done through cloud processing. The
prediction accuracy achieved the validation score 0.73, and
the F1 score is 0.65.

Following the supervised training, we perform prediction on
on blue Parahika block (Figure 4) using the trained model.
Figures 7 and 8 show several slices from predicted facies

Slope Mudstone A
Mass Transport Deposit
Slope Mudstone B
Slope Valley
Basement/Other
Submarine Canyon System

0.0

0.1

0.2

0.3

0.4

0.5

Figure 5: Training label distribution with 782 samples
divided in 6 geological classification, represented by the
above 6 colors.

with their respective seismic slice.

Conclusions

We applied a deep neural network framework for 3D
seismic facies classification calibrated from geologic
interpretation. The CNNs are powerful and efficient
for feature representation using seismic data and, thus,
provide more accurate seismic facies characterization.
Validation of field data shows the potential of the method,
and in future work, we plan to integrate, well log data in the
workflow, interpretation of other structural features such as
faults or salt bodies and other basins around the world.
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Figure 6: Training label distribution with 782 samples divided in 6 geological classification, represented by the above 6 colors.
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Figure 7: Stratigraphy slices predictions (left) and its respective seismic slice sample. Samples 1, 100 and 200.
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Figure 8: Stratigraphy slices predictions (left) and its respective seismic slice sample. Samples 300 and 334.
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