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Abstract 

Convolutional Neural Networks (CNNs) algorithms have 
been very successful in solving some image problems, 
such as some classification and object detection ones. 
Applying CNNs on seismic images is straight forward and 
academic research on this field is gaining momentum. 
Uses range from facies classification, semantic 
segmentation, and automatic faults and horizons 
interpretation to the improvement of seismic resolution, 
noise filtering, data reconstruction and others. In this 
work, we aim to solve a common seismic acquisition 
problem, which is to image the subsurface beneath an 
obstruction. Undershooting procedures and processing 
techniques are normally tried and usually can achieve 
good results in mitigating this problem, but on near offsets 
images are generally blank.  We use GANs (Generative 
Adversarial Networks) to train a CNN model that 
interpolates seismic data, and thus, can be used to 
generate data in cases of platform obstruction with high 
likelihood and coherence. 

Introduction 

Seismic imaging of producing oil and gas reservoirs faces 
many challenges, one of them is to overcome the lack of 
subsurface sampling beneath platforms. Towed streamer 
vessels have restrictions to navigate the production 
structures vicinity due to safety and maneuverability 
reasons. The fold of these areas can reach zero value, 
with no information at all. 

Undershooting (Hill, 1986) is a crucial technique to 
mitigate the probing of an area of difficult access, as 
reported by Johann et al. (2006), Sano et al. (2020), 
among others. It consists of using two separate vessels, 
one for the source only (air gun i.e.), that navigates on 
one side of the obstruction and the other vessel carries a 
reduced number of receptor cables (or cable) that 
navigates on the other side, getting closer to the platform.  
This arrangement is a very efficient technique, because it 
places the midpoint between source and receptor on the 
gap area recovering much data, albeit, for the near 
offsets, most information is completely lost. 

In addition to this acquisition solution, processing 
procedures further mitigate the problem by using 
regularization, migration, seismic merging and matching, 
but as pointed by Nath and Vershuur (2020): “If we use 

conventional seismic imaging algorithms that rely on 
primary reflection data only, migration artefacts become 
unavoidable”. They propose to use the surface-related 
multiples to get around cases like this one, with large 
gaps of information. 

From the current level of technology development, it is 
clear that no complete solution exists and non-
conventional techniques must address these near offsets 
gaps. 

Our approach uses recent CNNs architectures that 
successfully solve image problems and apply them to 
seismic data interpolation. Mandelli et al. (2019), for 
example, have performed great work using the U-net 
(Ronneberger et al., 2015) architecture, but only on 
synthetic data and have not addressed a large coherent 
gap, while Oliveira et al. (2018) have used the pix2pix 
(Isola et al., 2017) network, applying in seismic patches of 
80x80 samples, further reshaped to 256x256, increasing 
the possible number of training images, but introducing an 
up-sampled training image. They showed that the larger 
the size of the gap, the lower the correlation of the 
interpolated image with the real image. 

This work uses the ShiftNet (Yan et al. 2018), trained on a 
GAN scheme (Goodfellow et al., 2014). This network 
outperforms both the plain vanilla U-net, used in Mandelli 
et al. (2019), and the pix2pix network, used in Oliveira et 
al. (2018), in the inpainting task on the Paris StreetView 
dataset (Doersh et al. 2012). The network is trained and 
tested on real data from Brazil’s offshore, kindly handed 
over by Petrobras. 

 
Figure 1- Migrated and stacked seismic session showing 
the information gap due to platform obstruction. 
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Method 

Model Description 

Literature on Neural Networks architectures is extensive 
and exponentially growing. We chose the Shiftnet model 
because it outperforms other benchmark models in the 
task of inpainting RGB images. 

Shiftnet (Yan et al. 2018) is a U-net with an additional 
layer named shift-layer. The U-net architecture consists of 
an encoder-decoder scheme with skip-connections (He. 
et al., 2015) from the encoder part to the correspondent 
decoder one. We do not discuss its details in this paper, 
and we invite the readers to refer to Shiftnet and U-net 
papers. We will focus on the Shiftnet innovation, which is 
the shift-layer. Yan et al. (2018) were inspired by the 
deterministic technics classified as exemplar-based 
inpainting methods. As they describe: “the completion is 
conducted from the exterior to the interior of the missing 
part by searching and copying best matching patches 
from the known region.”  

Their insight was to make a similar approach, but in the 
convolutional feature space. They added a layer 
constructed by comparing the transpose convolutional 
feature vectors of the decoder layer on the receptive field 
of the missing image part (the green layer in Fig. 2) with 
the skip-connection features of the corresponding layer, 
but on the complementary receptive field (the salmon 
layer in Fig. 2). Then they copied the most similar feature 
vector of the skip-connection on the shift-layer, in the 
same place as the transpose connection (the light blue 
layer in Fig. 2).  

 
Figure 2 – The shift-layer (light blue) is constructed with 
feature vectors of the skip-connection layer (light orange) 
that are most alike to the transpose convolutional layer 
feature vectors (light green). Image obtained from 
https://github.com/Zhaoyi-Yan/Shift-Net_pytorch. 

The name shift-layer is due to its feature vectors being 
the ones of the skip-connection layer shifted to the 
missing data slot. The layers are stacked and feed the 
next convolutional layer. Yan et al. (2018) experimented 
with the shift-layer loction and found that it was most 
effective (balancing time of computation and final result) 
in the L-3 layer, L being the last layer of the U-net.  

Data description 

The dataset comes from Brazil’s offshore in Santos basin. 
It is a PSDM (post-stack depth migration) merge of two 
different acquisitions, with standard techniques applied to 
mitigate the obstruction problem, but the gap is still 

present (Fig. 1). The exact location of the data is omitted, 
due to a previous agreement with Petrobras. 

Seismic data has a size of 800x1200x1500 samples, of 
which 800 are the inlines, 1200 are the xlines and 1500 
are the depth samples. The training set was obtained 
from the first 700 inlines, excluding the inlines with an 
information gap, totalizing 563 usable inlines. From these 
inlines, 15000 2D images patches with 256x256 pixels 
were randomly picked, leaving 12000 for training and 
3000 for validation. Statistics of the mean and maximum 
values of the training set is stored, and used later in 
training to normalize the images. We use the last 100 
inlines to test the model, from which 1000 patches were 
randomly generated.  

All those images are perfect, with no information gap. For 
training purposes, we introduce the missing samples 
artificially as a mask in order to have the ground truth 
from the uncorrupted image. At the present stage, we use 
only a central mask that covers 25% of the image.  Figure 
3 shows an example of artificial deleting. 

 
Figure 3 – Training patches of size 256x256 with central 
mask on the left and with the ground truth on the right. 

Training Phase 

The model was trained in an adversarial manner (GAN). 
Shiftnet is the generative network G and the discriminator 
network D is constructed as a sequential convolutional 
neural network. It has five convolutional layers with leaky 
ReLU activation. Instance normalization is also applied 
after convolutional layers 2, 3 and 4. The discriminator 
output is obtained after a sigmoid function and yields the 
probability of the image be a real image (ground truth). 

Adversarial training is a competition between the 
Generative network and the Discriminative network. While 
D is trained to uncover if an image is authentic or fake 
(generated by G), G generates increasingly better images 
to be tested by the discriminator. G fills the image gap 
generating fake images with detailed near realistic 
seismic image. Besides the adversarial loss, an L1 norm 
is used to ensure that the final fake image should be an 
approximation of the ground truth image. 

In summary, we get a 256x256 image sample and 
normalize it with the mean and maximum values stored 
from the whole training set. Also, we do a random 
horizontal flip with a 50% probability in order to increase 
data variability (data augmentation). Then, a mask is 
added in order to simulate an image gap. This masked 
image is fed to the generative model, which outputs a 
filled fake image. The discriminator is fed with both fake 
and ground truth, outputting probabilities for each one. D 
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is updated (with adversarial loss), G is updated (with 
adversarial loss and L1 norm), and the cycle is repeated.  

We trained the network for 250 epochs with a batch size 
of one (SGD – stochastic gradient descent), and within 
each epoch, the model sees all training set. A mean L1 
norm is computed for each epoch for both the training and 
validation sets and evolution can be observed in Fig. 4. 
We see that the validation L1 norm reached a plateau 
roughly after epoch 50, oscillating around 0.79, but the 
network was still learning. The plateau can be explained 
because the network does not recover the same data. 
Therefore, the L1 norm cannot improve, but on the 
training set, the model is still learning to generate realistic 
data. Overfitting is discarded based on validation 
performance. 

We run the model training on GPU, a GeForce GTX 1080 
ti with 6.1 computing capability. The code was written in 
Python, modified from the Shift-Net PyTorch repository. 
The total time of training was 93h. 

 
Figure 4 – Mean L1 loss evolution for the training set 
(blue) and the validation set (orange). 

Results 

After training, the resulting model was applied to the test 
set with 1000 patch images. Results are displayed for 
three different depths to show the effect of varying 
frequency content. We show three images for each 
selected depth: (1) the leftmost image is the true patch 
with the artificial mask (real_A); (2) the center image is 
the fake one generated by the trained Shift-Net model 
(fake_B); (3) rightmost image is the ground truth (real_B).  

 
Figure 5 – Test images sampled from 550m. On the left 
is the real masked image (real_A), on the center the fake 
generated (fake_B) and, on the right, the real uncorrupted 
image (real_B). 

The first sampled depth is around 550m and it is shown in 
Fig. 5. One can observe that most energetic reflectors are 
well recovered and finely detailed information is also 

present. If the fake image is not presented as a fake one, 
the interpreter could be fooled by it. Yet, with a closer 
look, it is possible to see a slight difference of energy in 
the center of the fake image, and some border artifacts, 
but nothing too flashy. 

 
Figure 6 – Test images sampled from 2250m. On the left 
is the real masked image (real_A), on the center the fake 
generated (fake_B) and, on the right, the real uncorrupted 
image (real_B). 

The second depth sample is close to 2250m and can be 
seen in Fig.  6. The loss of frequency content is clear and 
the reflectors are inclined. Performance is a little inferior 
as compared to the shallower counterpart, but still very 
realistic. 

 
Figure 7 - Test images sampled from 4000m. On the left 

is the real masked image (real_A), on the center the fake 
generated (fake_B) and, on the right, the real uncorrupted 
image (real_B). 

The third depth sample is from near 4000m with even less 
frequency content, and can be seen in Fig. 7. 
Performance is close to the depth of 2250m.  

We also analyze the coherence of the generated images 
between adjacent inlines. This is important to reconstruct 
seismic data because if one inline is completely different 
from the next one, it is impossible to interpret a horizon. 
Generative models can produce images completely 
different from inputs slightly distinct. In our case, the Shift-
layer serves as a contour condition, because it uses the 
information from the uncorrupted image, producing 
coherent images for sequential inlines. This kind of 
analysis was not done in previous related work and is the 
first to our knowledge. 

Below is possible to apprize the coherence between three 
generated patches from sequential inlines. We show 
images for three different depths, the shallower is shown 
in Fig. 8, the middle depth is shown in Fig. 9 and the 
deeper one is shown in Fig. 10. The high similarity 
between these sequential inline makes this trained 
network suitable for reconstructing large gap information 
seismic data. We reason that this depends on the data 
itself, if the inline distance is too high so that images from 
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one inline to another are too different, this level of 
coherence will not be achieved. 

 
Figure 8 – Fake (generated) images from sequential 
inlines for shallow depth. 

 
Figure 9 - Fake (generated) images from sequential 
inlines for middle range depth. 

 
Figure 10 - Fake (generated) images from sequential 
inlines for deeper depth. 

 

Conclusions 

Generative Adversarial Networks are applied in this work 
to fill large gaps of information in real seismic data. The 
sources of these gaps vary and they are not rare in real 
images. The proposed method achieved good 
performance by filling the images with realistic and fine-
detailed information using a real dataset and artificially 
generated gaps. We showed that this novel neural 
network provides a contour condition for generating 
coherent images across different adjacent inlines. Future 
work will address comparison metrics and the 
reconstruction of the data itself.  
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