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Abstract   

In the Middle Magdalena Valley Basin (MMVB) in 
Colombia, there is the Mugrosa formation of high oil 
interest, since large hydrocarbon reserves accumulated in 
it. of the various wells that were drilled in the area, the three 
of main interest for this research are Tenerife 1 (T1), 
Tenerife 2 (T2) Of the various wells that were drilled in the 
area, the three of main interest for this research are 
Tenerife 1 (T1), Tenerife 2 (T2) where the dipolar P wave 
(DTCO), dipolar S wave (DTSM), and Gamma-Ray (GR) 
well logs were partially registered, and Tenerife 3 (T3) that 
does not have such logs. The lack of this information 
becomes an obstacle for present and future research and 
industrial projects in this and other areas of the country, 
since completing them by traditional methods is technically 
and economically unfeasible. 

The present research proposes the implementation of a 
range of Machine Learning (ML) methods such as Random 
Forest, KNN, Gradient Boosting, AdaBoost, Multi-linear 
Regression, and Artificial Neural Networks, to provide an 
economically viable solution. to this problem, since the 
computational alternatives proposed in this work present a 
much lower cost than the entire technical and logistical 
process of obtaining records traditionally. 

 

Introduction 

The Magdalena Middle Valley Basin (MMVB) in Colombia 
is one of the most economically and historically important 
sedimentary basins in the country due to the exploitation of 
hydrocarbons (Velásquez-Espejo, 2011), in this, the 
Tenerife field is located, where three holes were made T1, 
T2 and T3 (Tenerife-1, Tenerife-2, and Tenerife-3 
respectively), where the P-wave (DT) sonic records were 
taken, potential spontaneous (SP), density (RHO) and 
deep induction resistivity (ILD), in addition, in the first two 
there is partial information from the dipolar S-wave 
(DTSM), dipolar p-wave (DTCO) and lightning gamma 
(GR) and do not exist for the last well. Additionally, pseudo-
records of porosity (PHIE), clay volume (Vclay), and water 
saturation (Sw) were calculated using rock physics. 

The almost complete depletion of the conventional 
resources of the area today forces to explore other types 
of geological formations in which the data were not taken, 
however, repeating the drilling process would be 
technically and economically unfeasible. To solve this type 
of problem, many computational techniques have been 
developed over the years, such as parametric-based ones 
such as multi-component induction well-logging (MCIL) 
(Wang et al., 2008) and autoregressive models (Bianchin 
et al., 2019) and lately, those based on artificial intelligence 
(AI) techniques, where different Machine Learning (ML) 
algorithms are used, the objective of which is to make the 
program learn from known information (well logs) and be 
able to predict the missing information. Among them are 
multiple regression algorithms and neural networks (NN) 
that were used in South-West Iran (Eskandari et al., 2004) 
to reconstruct shear wave velocity from log data. 
Parapuram et al. (2018) uses ANNs to predict 
geomechanical properties of the Bakken formation in North 
Dakota (USA) and a special type of ANN called recurrent 
(RNN) are used by Zhang et al. (2018) to generate 
synthetic well data and compare the results with those 
obtained by a classic NN (Full Connected). These ML 
models have given promising results in the prediction of 
geophysical data, however, although ML has been 
showing good performance in geosciences over the years 
(Bergen et al., 2019), in Colombia the application of these 
tools Mainly in the field of Petrophysics , there has been 
little, even so, there are works such as the one developed 
by Iturrarán-Viveros et al., (2018) where the correct 
performance of the NN is satisfactorily validated to 
determine petrophysical properties in the same field 
Tenerife in Colombia, which motivates us to develop more 
studies on ML Applications in MMVB and Colombia. 

The data from wells T1, T2 and T3 (Figure 1) are divided 
into two groups as follows: the input, which are present 
throughout the entire drilling as Depth, DT, SP, RHO, 
PHIE, Vclay, Sw and ILD and the objective data GR, DTCO 
and DTSM, which are partially along T1 and T2, and are 
unknown in T3. 
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Figure 1. Distribution of Wells T1, T2 and T3, distance in 
meters 

To do this and obtain the ML model with the best results, 
the task was approached from a generalized perspective 
that seeks to obtain, through a methodology, the best ML 
method for the area of interest, but which in turn, When 
using it in any other area, it is fully functional, that is, in this 
work we implement a methodology that autonomously 
compares six different ML methods, first by varying the 
hyperparameters of each of these, thus finding the optimal 
referent values. to the information of interest, using cross-
validation as a selection parameter, later it creates the six 
best models and confronts them with each other so that in 
the end only the model with the best results remains. 

 

Method 

Currently, geoscientists face increasingly overwhelming 
amounts of data, they are in the task of extracting as much 
useful information as possible from these, for this they use 
tools such as Machine Learning (ML), which has 
demonstrated its efficiency when reconstructing geological 
information (Bergen et al., 2019). However, when 
addressing a data science problem, the distribution and 
correlation of information are one of the deterministic 
factors to obtain a good result (Provost & Fawcett, 2013), 
this is mainly due to the architecture of the different ML 
methods and their interaction with data; To achieve this 
good Data-Model combination, a methodology was 
developed, which is divided into three stages and aims to 
identify the ML algorithm that provides the best 
performance according to the distribution of the data in the 
target area; This methodology is summarized in Figure 2 
and was used to successfully reconstruct some missing oil 
well logs in the MMVB in Colombia. Each stage is 
described below: 

 

Figure 2. Applied methodology. 

 
Stage 1: Exploratory Data Analysis (EDA): The EDA is 
one of the fundamental bases for obtaining new 
information from known data sets. It is based on the use of 
a series of tools that allow knowing the nature of the 
existing information to evaluate the most relevant 
parameters according to the analyst's experience (Milo & 
Somech, 2020). Among the various tools for exploratory 
analysis are filtering, aggregation, visualization and 
distribution techniques. In the analysis process, the two 
main points that were taken into account were the 
following: 
 

I.Consistency of the data: through a statistical description, 
the distribution of each of the input columns was visualized, 
to find typing errors, anomalous data and behavior of the 
data by percentiles. 
 

II.linear correlation and independence: Using a correlation 
matrix it was observed that the depth presents a great 
correlation with the output data, something to be expected 
due to the formations present in the well, but when 
predicting the records of another well where the formations 
are in different depths, this dependency increased the 
error, therefore this column was eliminated. 
 
Stage 2: Algorithm 
a. Method selection: the algorithm consists of 6 ML 
methods, from which you can choose with which you want 
to carry out the entire selection, prediction and validation 
process, the ML models available for this work are: 

I. Linear regression (LR) 
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II. Random Forest Regressor (RF) 
III. K Near Neighbors Regressor (KNN) 
IV. Gradient Boosting Regressor (GB)  
V. AdaBoost (AdaB) 

VI. Artificial neural networks (ANN) 

 
b. Auto tune: The hyperparameters of ML methods, 
significantly the performance, whether in the computation 
time, overtraining, reliability of the result, among many 
other characteristics. The autonomy of the algorithm allows 
it to search, using tools from the Sklearn Python library, for 
the combination of hyperparameters that provide the best 
score in cross-validation with the data to be analyzed for 
each of the ML methods selected from the main algorithm, 
as in the case of Paper (2020), where they explain how to 
implement GridSearchCV to tune hyperparameters in ML. 
 
c. Error metrics: Various statistical tools were used 
to determine how accurate each of the models is and then 
compare them with each other and choose the best one, 
the metrics used are: 

I. MAE (Mean absolute error) 
II. MSE (Mean square error) 
III. RMSE (Root mean square deviation) 
IV. Percentage absolute error 
V. Normalized error 

d. Best method comparison:  After obtaining the 
evaluation metrics of each method, the algorithm analyzes 
which of these selected ML models gives the best result 
using the absolute error as a determining parameter of 
selection, then the algorithm makes a complete prediction 
of the data used for testing. and returns all the testing 
information in a DataFrame to thoroughly analyze its 
performance, in addition to returning the optimal model 
trained to make subsequent predictions. 
 
e. Already having the best models from the process 
seen so far, we proceed to make a cross-prediction of the 
two databases and their combination, that is, use the 
model obtained from T1 to predict T2 and vice versa, then 
join T1 and T2 in the same TT (Tenerife Total) database to 
carry out the entire algorithm process and subsequently 
analyze its performance. 
 
Stage 3: Reconstruction 
a. Reconstruction of missing section of T1: the ML 
model obtained from the process in numbers 1 and 2 
applied to T1 is used to predict the unknown zone of said 
well. 
b. Reconstruction of missing section of T2: The ML 
model obtained from the process in numbers 1 and 2 
applied to T2 is used to predict the unknown zone of said 
well. 
c. Reconstruction of T3: The ML model obtained 
from the process in numbers 1 and 2 applied to TT is used 
to completely reconstruct the unknown records of well T3. 
 

 

 

Results 

Various experiments were carried out in wells T1 and T2, 
in these it was observed that when predicting T1 with the 
model obtained from T2 and vice versa the error increased, 
in the case of the DTSM prediction of T1 predicted with T2 
an absolute error was reached approximately 20%, which 
is not a satisfactory error for this work, so a series of 
analyzes and tests were carried out with different 
combinations of input data finally, it was concluded that 
depth (Depth) is the parameter that generates this error, so 
by repeating the previous prediction, but without using 
Depth as an input parameter, it was possible to reduce the 
percentage of DTSM error of T1 predicted with T2 at 8%, 
a significant improvement (more than 10 percentage 
points), the DTCO also improved, it went from 10.6% to 
5.7% absolute error, this is reflected in Tables 1 and 2 
However, we could see that the GR went from a 13.2% 
error to 14.4%, which was assumed to be an acceptable 
cost due to the improvements obtained in the other 
predictions; It should be noted that as the various 
experiments were carried out, the algorithm developed 
seeks the ML method that will provide the best result for 
the Input-Output combination of the data, therefore, as 
seen in tables 1 and 2, the methods of ML used for the two 
experiments presented are not the same, but they are the 
ones with the best results for each case, which is precisely 
what is sought with this algorithm, adaptability to various 
scenarios. 

 
Table 1 

Prediction Metrics T1 with T2 (without depth) 

Parameter Method % Mean error MAE 

GR RF 14,41043 9,943142 

DTCO RF 5,691536 4,538581 

DTSM RF 8,006072 12,44406 

 
Table 2 

Prediction Metrics T1 with T2 (with depth) 
Parameter Method % Mean error MAE 

GR GB 13,157799 8,190888 
DTCO KNN 10,60402 8,668988 
DTSM KNN 19,424515 30,77529 

 
Knowing the combination of the data that gives us the best 
results to predict records in distant wells, an analysis was 
carried out in the same well to obtain the information on the 
behavior of the ML methods for each one and thus 
measure their performance at the time to rebuild 
information about itself, this was done three times, once for 
each perforation (T1 and T2) and a third for the 
combination of these (Tenerife Total “TT”), as can be seen 
in Table 3, they were obtained More than satisfactory 
results, however, when analyzing the ranges in which the 
data varies, it was noted that the absolute error does not 
always reflect the reality of the data when the magnitudes 
present a very large offset, therefore a normalized error 
was added for taking into account the uniqueness of each 
well log. 
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Table 3 
Tenerife 2 metrics 

Parameter Best 
method 

% Mean 
error Test 

Test 
MAE 

% 
Normalized 

error 
GR RF 4,948 2,989 3,621 

DTCO RF 4,111 3,480 5,515 
DTSM RF 5,551 9,547 5,620 
 
Now, seeing the information in Table 3, the normalized 
error at first glance does not seem to give new information, 
but when applied to the prediction made at T2 using T1 
shown in Table 4, we see that it becomes relevant because 
shows us a uniformity in the predictions, which is not 
evidenced in the absolute error, this allows us to identify 
that in the fluctuation zone, the predicted and the real 
information differ homogeneously around 10%, which is a 
promising. 
 

Table 4 
Metrics Prediction T2 with T1 

Parameter Method % Mean 
error 

MAE % Normalized 
error 

GR RF 12,34551 7,479539 9,059519 
DTCO RF 6,594747 5,967743 9,457595 
DTSM RF 9,420959 17,48694 10,29492 
 
 
After obtaining these results, we advanced to the analysis 
of the TT model, which was used to predict T3, since it is 
the one that presents more generalized information; As can 
be seen in Table 5, which shows the result of the TT test, 
this model presents better results when predicting DTCO 
and DTSM than the T2 model for itself as can be seen in 
Table 3, this gives us to understand, that by joining 
information from several wells to develop a generalized 
model, it is possible to have an even greater precision than 
that of a model created only with information from itself , 
however to be able to ensure this, it is necessary to carry 
out more studies and determine what other parameters 
influence this. Even so, having satisfactory results such as 
those obtained in the ML Models developed, the 
reconstruction of the missing information of T1, T2 and the 
total reconstruction of T3 continued. 
 

Table 5 
Tenerife Total Metrics 

Parameter Best 
method 

% Mean 
error Test 

Test 
MAE 

% Normalized 
error 

GR RF 5,269 3,248 3,93 

DTCO RF 3,677 3,070 4,866 
DTSM RF 5,144 8,558 5,038 

 
In Figure 3 we can see the behavior of the prediction in T1 
with TT and the union with the reconstruction of the missing 
data, it can be seen that the model presents a continuity 
with the already known data and that its fluctuation range 
is consistent with that of the existing information, it should 

be noted that as seen in the area where the predicted and 
real information coexist, the prediction model faithfully 
follows the movement of the signal but does not follow the 
points where peaks occur, this is a good thing, because if 
it did, it would show an over-fit of the model, which would 
make the reconstruction of the missing information 
unfeasible, Figure 4 shows the correlation between the real 
data and the predicted GR in T1 Using the TT model, this 
shows the high density in the central area and as it 
decreases at the ends of the scatter diagram, this reflects 
the peaks that were discussed previously, which the 
algorithm is not able to follow. 
 

 

Figure 3. Reconstruction of T1 with TT, GR, DTCO and 
DTSM respectively, Orange real value, blue reconstructed 

value 

 
 

 
Figure 4. Scatter plot and histogram of the prediction of 

the GR test in T1 with TT 
 

Finally, the T3 prediction was carried out using the TT 
model. As it does not have information on the predicted 
data, the metrics that were used previously cannot be 
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presented, however, an indication that the model is correct 
is the fluctuation ranges of the estimated records. In Figure 
5 we can see that T3 reconstructed GR, DTCO and DTSM 
vary in a similar range as in the case of T1 reconstruction 
(Figure 3) 
 

 

Figure 5. Reconstruction of T3 with TT, GR, DTCO and 
DTSM respectively. 

 

Conclusions 

 

The "classic" ML models presented better results than 
ANN in all cases, this agrees with Bergen et al. (2019), 
where it is said that this happens due to the reduced 
volume of data with which it works, in turn, it was evidenced 
that a generalized model (TT) when predicting the records 
with which the error was trained is similar to the average of 
the errors of the unique models of each well, but the 
generalized model, allows to predict information of 
unknown wells with greater precision. 

For future work, it is expected to be able to validate the 
reconstructed information from Geophysics, analyzing its 
consistency with respect to local geology and also to be 
able to test these tools in other geoscience environments 
such as in the mining sector. 
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