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Abstract 

Geohazard studies aid the identification of geological 
features on surface and subsurface that might be related 
to potential risks for the installation of subsea engineering 
projects in the oil and gas (O&G) industry. The detection 
and interpretation of these risk features are crucial tasks 
both in the exploration and development phases of oil 
production. Within this context, high resolution geophysical 
methods are used to manually identify and map the 
features of potential hazards to subsea installations. This 
work presents the application of computational techniques 
to raise the level of automation in geohazard studies, using 
models based on deep learning through U-Net, a type of 
Fully Convolutional Networks (FCNs). The result was the 
implementation of an intelligent system for automating the 
task of identifying and classifying geohazards, which 
makes it possible to mitigate the time spent in the search 
for occurrences of potential risks and provides greater 
attention to their analysis. 

 

Introduction 

Subsea engineering projects in the O&G industry require 
several input products, including geohazard studies. 

Geohazard is defined as “A geological state, which 
represents or has the potential to develop further into a 
situation leading to damage or uncontrolled risk” 
(<https://www.ngi.no/eng/Projects/ICG-International-
Centre-for-Geohazards/Offshore-Geohazards>. Access: 
June/2021). I.e., they are all the geological elements of the 
seabed potentially causing any kind of damage to people, 
the environment or underwater infrastructure. The 
following characteristics can be cited as geohazard 
features: slope instability processes, high slope gradients, 
geological faults and the presence of carbonates (possible 
corals). Hence, geohazard studies are paramount in the 
initial phases of subsea engineering projects as they will 
be able to identify potential risks to the installation of 
pipelines, equipment, wells, mooring systems, among 
others. Geohazard investigations in the marine 
environment can be carried out indirectly through the 
acquisition, processing and interpretation of high resolution 
geophysical data, including SONAR (Sound Navigation 
and Ranging). 

SONAR is a method based on the principles of sound 
propagation underwater, by the emission of a high 
frequency acoustic signal at regular time intervals by two 
submerged transducers (emitters and receivers), which 
points to both sides of the surface, in relation to the course 
of navigation of the vessel. This method allows obtaining 
detailed information through different signal reflection 
patterns, enabling the geohazard features mapping, the 
type of seabed (sands, muds, rocks, carbonates/corals, 
etc.), inference as well as anthropogenic structures 
(pipelines, equipment, scraps, wrecks, etc.) identification, 
as illustrated in Figure 1. 

 

 

Figure 1 – SONAR image example. Extracted from: 
<https://www.usgs.gov/media/images/side-scan-SONAR-
mosaic-offshore-petit-bois-island>. Access: June/2021. 

 

Currently, the detection and interpretation of geohazard 
features through SONAR data is performed manually, 
requiring a considerable amount of time by specialists. To 
automate the identification of such features, this work 
presents the application of deep learning techniques using 
Convolutional Neural Networks (CNNs) models, 
specifically U-Net type of Fully Convolutional Networks 
(FCNs). 

According to Vargas et al (2016), CNNs are currently 
widely used mainly in the computer vision area, such as in 
classification, detection and recognition image and video 
data. Typically, CNNs are composed of a set of 
convolutional and pooling layers that extract representative 
features while reducing the dimensions of the input 
images. Afterwards, the final characteristics are passed 
through some fully connected layers and an activation 
layer to get the final prediction (Figure 2). However, the use 
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of fully connected layers involves a loss of spatial 
information as well as a restriction on image input size.  

 

 

Figure 2 – The overall architecture of the Convolutional 
Neural Network, Vargas et al (2016). 

 

The approach of an FCN was introduced by Long et al 
(2015). In this work, the authors propose an adaptation of 
existing CNNs, transforming the fully connected layers into 
convolutional ones, allowing the generation of 
segmentation feature maps for each image. Regarding the 
segmentation task, it is necessary that the neural network 
combines the location information with the contextual 
information of the image feature maps to be predicted. 
Among the FCNs, U-Net has been proven to be effective 
especially for image segmentation. According to 
Ronneberger et al (2015), the U-Net network consists of 
two paths: contraction (encoder) and expansion (decoder). 
The contraction path can gather contextual information 
through sequences of convolutional layers and 
maxpooling. The expansion path can obtain the locational 
information by increasing the output of the contraction path 
to its original size by sets of transposed convolutions 
followed by convolutional layers. After each transposed 
convolution, the result is concatenated with its 
corresponding contraction path (Figure 3). 

 

 

Figure 3 – Architecture U-Net, Ronneberger et al (2015). 

 

Method 

The workflow adopted to perform the semantic 
segmentation of SONAR images into two distinct classes 
of geohazard features, namely mud and carbonate 
(possible coral) is presented below, using supervised 
learning through U-net neural networks, Figure 4. 

 

 

Figure 4 – Global methodology to detect geohazards from 
a set of SONAR image using a U-Net architecture. 

 

In the SONAR image of Figure 4, the carbonate are the 
features with the higher amplitude (in black), while the mud 
shows lower amplitude (in grey). 

There are mainly four phases in the workflow, (i) data 
acquisition, (ii) pre-processing, (iii) training and (iv) testing 
(Figure 5). 

 

 

Figure 5 – General workflow chart used in this work. 

 

(i) Data acquisition 

The SONAR image, manual segmentation and 
classification of geohazard features were extracted from 
Petrobras' on premise database. In all the following stages, 
Python language (version 3.8) was used and the TiffFile, 
Scikit-learn, Matplotlib, NumPy, Skimage, OpenCV, 
TensorFlow and Keras libraries were used. The settings of 
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the hardware resources used were Intel(R) Core(TM) i7 
CPU @ 1.99Ghz RAM 8GB. 

 

(ii) Pre-processing 

At this stage, the SONAR images and their labels were 
loaded with the following shape: 5854m x 4288m x 3 and 
1m x 1m resolution. The patches for both were extracted 
setting the size to 128 x 128 x 3 (16416 patches). 
Afterwards, the pixel values of the images were converted 
to floating-point type. Then, the data was normalized by the 
highest pixel value. Finally, data were splited into training 
(~70%), validation (~15%) and testing (~15%). The result 
is shown in Figure 6. 

 

 

Figure 6 – Train, validation and test data. 

 

(iii) Training 

The U-Net architecture is composed of four convolutional 
blocks in the contraction path, where each block has two 
2D convolutional layers and a 2D max pooling layer. Before 
beginning the expansion path, two more 2D convolutional 
layers are added. Then, the output of the contraction path 
is upsized by four more blocks with transposed 
convolutional layers. At the end, a sigmoid activation 
function is used to obtain the final segmentation. 

The training (x_train, y_train) and validation (x_val, y_val) 
data were used in this phase, in addition to Early Stopping 
regularization method to avoid overfitting. 

The best model with the best performance was saved to be 
loaded in the testing phase. 

 

(iv) Testing 

Here, the best model of the training phase was loaded and 
the accuracy and loss in the test data (x_test, y_test) were 
evaluated. 

 

Results and Discussion 

Several hyperparameters were manually tested and 
adjusted in the training phase, aiming to improve the model 
performance. Table 1 presents the best fits of the 

hyperparameters, while Table 2 presents the performance 
of the best U-Net model. 

Table 1 – Best hyperparameters in U-Net model. 

Build U-Net Model 

input shape = (128,128,3) 

Contraction path 

Conv2D layers 

filters 
kernel 

size 
padding 

kernel 
initializer 

activation 

16, 32, 
64,128, 256 

3,3 same he normal relu 

MaxPooling2D layers 

pool size strides 

2,2 2 

Expansive path 

Conv2DTranspose layers 

filters 
kernel 
size 

padding 
kernel 

initializer 
activation 

128, 64, 
32,16 

2,2 same he_normal relu 

Conv2D layers 

filters 
kernel 

size 
padding 

kernel 

initializer 
activation 

128, 64, 
32,16 

3,3 same he normal relu 

output shape = (128,128,1) 

Conv2D layer 

filters kernel size activation 

1 1,1 sigmoid 

Compile Model 

optimizer loss metrics 

adam binary cross entropy accuracy 

Fit model 

callbacks batch size epochs 

Model 
Checkpoint 

(save best only) 

Early Stopping 16 10 

 

Table 2 – Model performance during the training phase. 

Best U-Net model 

Train data Validation data 

accuracy loss accuracy loss 

0.9980 0.0048 0.9979 0.0052 
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Figures 7 and 8 show the evolution of accuracy and loss, 
respectively, during the training phase. 

 

 

Figure 7 - Training curves – accuracy. 

 

 

Figure 8 – Training curves – loss. 

 

Despite few training periods (10 epochs), it was observed 
that the model reached 99% accuracy in the second epoch 
and from then onwards, it improved more slowly until 
epoch 10, when it reached the best accuracy of 99.8%. It 
is noteworthy that for the validation data, the accuracies 
were higher than for the training data until epoch 5, when 
they converged until the end of the training. 

In relation to the loss value, there was an abrupt drop also 
in the second epoch and from then on, the model improved 
more slowly until epoch 10. Confirming the trend of what 
happened with the accuracy values, the loss values were 

higher in the training data up to epoch 5, when they 
converged until the end of training. 

After the training phase, test data (x_test, y_test) were 
provided to the best U-Net model from the training phase 
to verify its generalization capability. 

Table 3 shows the performance of the U-Net model and it 
is noted that the model was able to learn when new data 
were presented. 

 

Table 3 – Model performance in the test phase. 

U-Net model 

Test data 

accuracy loss 

0.9979 0.0051 

 

Figure 9 shows the comparison between the output test 
data (y_test) and the data predicted by the U-Net model. 

 

 

Figure 9 – Input data (x_test), output data (y_test) and 
model predictions. 

 

Conclusion 

The present work raised the level of automation of 
geohazard studies, implementing an intelligent system 
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through fully convolutional neural networks of the U-Net 
type in the segmentation of SONAR images. It achieved 
the ability to differentiate mud and carbonate features with 
an accuracy of 99.79%, proving the efficiency of such 
networks in the task of image segmentation. 

 

Acknowledgments 

The authors would like to thank Petrobras for permission 
to publish this work. 

 

References 

LONG, J.; SHELHAMER, E.; DARRELL, T. 2015. Fully 
convolutional networks for semantic segmentation. In: 
Proceedings of the IEEE conference on computer vision 
and pattern recognition. p. 3431–3440. 

NGI, 2012. Offshore Geohazards. Available in 
<https://www.ngi.no/eng/Projects/ICG-International-
Centre-for-Geohazards/Offshore-Geohazards>. Access: 
June/2021. 

RONNEBERGER, O.; FISCHER, P.; BROX, T. 2015. U-
net: Convolutional networks for biomedical image 
segmentation. In: SPRINGER. International Conference 
on Medical image computing and computer-assisted 
intervention. p. 234–241. 

USGS. 2016. Side-scan sonar mosaic offshore of Petit 
Bois Island. Available in 
<https://www.usgs.gov/media/images/side-scan-SONAR-
mosaic-offshore-petit-bois-island>. Accessed: June/21. 

VARGAS, A. C. G.; PAES, A. V. C. N. 2016. Um Estudo 
sobre Redes Neurais Convolucionais e sua Aplicação em 
Detecção de Pedestres. P. 20-21. 


