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Abstract 

Machine learning has been increasingly used to solve 
problems in the oil and gas industry as these methods help 
to automate tasks and optimize time. One application that 
has been standing out is electrofacies interpretation from 
well logs using classification algorithms. Recently, the 
FORCE 2020 Machine Learning Competition took place 
and aimed to classify rocks from 20 different wells from the 
North Sea. Our study shows that applying petrophysical 
interpretation concepts as a data preconditioning strategy 
helps to improve your model performance. We also 
highlight the importance of data imputation in zones that 
previously had no values and the process of creating 
attributes for better class separation. The results indicate a 
high performance, where an average accuracy of 80% was 
achieved and relative penalties (competition performance 
metrics) of -0.4792 and -0.5037 for the two test data. This 
result placed us in the second position in the final ranking. 

 

Introduction 

Serra & Abbot (1982) defined the term “electrofacies” as 
sediment characterization by its response to a set of well 
logs. The interpreter analyzes all the received data and 
then gives an opinion on the possible type of rock. As this 
conventional method can be repetitive and time-
consuming, statistical principles of artificial intelligence 
have proven to be an alternative for the industry due to the 
high demand for work optimization and automation. The 
purpose of a machine learning application is to identify 
patterns in the data that can generalize well to new data 
(Russel et al., 2010). 

Several works have been published with this theme. Some 
use algorithms with recursive partitioning techniques (tree 
methods) for classification (Chen & Guestrin, 2016; Zhang 
& Zhan, 2017); while others make the classification based 
on calculations of the Euclidean distance between samples 
(Hall, 2016; Puskarczyk, 2019). Among all these, the 
Extreme Gradient Boosting (XGBoost) algorithm has stood 
out in several researches and competitions with 
classification problems (Torlay et al., 2017; Zhang et al., 
2018). This algorithm uses a method of boosted trees 
(ensemble technique), where it creates weaker models 

(weak learners) and each model tries to correct the errors 
present in the previous one.  

The lack of data in relevant regions can add uncertainty to 
your model. It is common to make an imputation on missing 
data through trend measures such as mean or median in 
signal studies. However, the imputation of a constant value 
to well logs would not effectively represent the 
heterogeneity of geological formations. Recent studies 
show the predictive power of machine learning algorithms 
for estimating these logs (Perez et al., 2003; Al-Mudhafar, 
2020). The use of these techniques with the aid of proper 
processing can considerably help to reduce the uncertainty 
of missing data. 

The oil and gas industry already uses attribute generation 
techniques to create more characteristic properties for a 
given problem. The creation of the clay volume log from 
others indicates the normalized estimate of this sediment 
along the well, for example. In recent years, studies show 
that mathematical transformations of data to increase 
features can help to improve the performance of machine 
learning models (Bestagini et al., 2017; Galli, 2020). These 
new attributes tend to better separate classes that are not 
originally separable.  

Recently, Bormann et al. (2020) created the FORCE 
Machine Learning Competition to classify electrofacies 
with a dataset containing more than 100 wells in the North 
Sea region, offshore Norway, and there were more than 
300 registered teams. The last open competition of the 
same type was organized by SEG with a much smaller 
database (Hall, 2016). After that, several researches have 
been developed using that data, which boosted the 
progress of studies in this area.  

We, from the GIR team, finished the FORCE competition 
in second place and this study will show how efficient data 
imputation and attribute generation helped us to achieve 
high performance, in addition to other types of processing. 
All contest data and winners' code are available online*. 

The study area is part of the Norwegian continental shelf, 
mainly in the North Sea region (Figure 1). Rifting phases 
during the Upper Jurassic/Lower Cretaceous, partially 
controlled by older structures, helped to form the structural 
scene of the area (Halland et al., 2014). It presents highly 
variable geology, containing predominantly shales and 
shaly variations. Reservoirs are characterized by 
sandstones from a marginal marine environment and 
deltaic systems, originating mainly during the Upper 
Jurassic (Halland et al., 2014). 

______________________________________________ 

* https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition 
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Figure 1 – Location of the studied area. The dashed red 
polygon represents the Norwegian North Sea. Source: 
adapted from Google Earth. 

 

Method 

The competition made 98 wells available as training data, 
ten wells as test data for the formation of a partial ranking, 
here called test data 1, and then another ten wells for the 
final evaluation of the model, called test data 2. This work 
will present the classification on the test data 1 and 2, using 
the training data to fit the model. 

The data has 29 well logs available: well name (WELL), 
resistivity logs (RDEP, RSHA, RMED, RXO and RMIC), 
spontaneous potential (SP), neutron porosity (NPHI), 
photoelectric factor (PEF), sonic logs (DTC and DTS), 
gamma ray (GR), bulk density (RHOB), density correction 
(DRHO), caliper (CALI), borehole size (BS), differential 
caliper (DCAL), rate of penetration logs (ROP and ROPA), 
spectra gamma ray (SGR), drilling mud weight 
(MUDWEIGHT), measured depth (DEPTH_MD), X and Y 
coordinates (X_LOC and Y_LOC), true vertical depth 
(Z_LOC), lithostratigraphic units (GROUP and 
FORMATION), true lithology (FACIES)  and qualitative 
measure of interpretation confidence (CONFIDENCE). 
The last one is available only on the training data. And 
there are 12 types of facies: Sandstone, Sandstone/Shale, 
Shale, Marl, Dolomite, Limestone, Chalk, Halite, Anhydrite, 
Tuff, Coal and Basement. 

Quality Control 

First, we evaluated the facies count in the available data to 
better understand their distributions (Figure 2). Then the 
study assessed the number of missing data to identify 
which logs are most reliable (Figure 3). 

The approach removed anomalous values from the training 
data that could add uncertainty to the model, as in the case 
of washout areas, for example. Highly positive or highly 
negative values in DRHO and DCAL logs suggest that 
these areas could be affected by some properties of the 
drilling mud after the wellbore enlargement. Therefore, it 
was decided to carefully remove these samples with 
extreme values. 

Samples with infinite or meaningless values, such as 
negative values for resistivity logs, were converted into null 
values to later be estimated through imputation. 

 

Figure 2 - Sample count showing the facies relation for 
each available data. 

Figure 3 - Sample count with real values (not null) for 
training, test 1 and test 2 data altogether. 

 

Data Imputation 

This study correlated the features of the training data 
through Pearson's coefficient to analyze the statistical 
relationship between them and use this information in favor 
of the model (Figure 4). This kind of analysis is necessary 
to identify some type of important trend in your data. 

 

Figure 4 - Features correlation from training data with 
Pearson coefficient. Darker blocks represent high positive 
correlations and lighter ones high negative correlations. 
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This work decided to estimate values in place of missing 
data using a regression algorithm (ExtraTrees). The 
imputation is done in an automated way, taking into 
account the statistical and petrophysical character of the 
logs. After analyzing the largest absolute statistical 
correlations between them, groups of different logs were 
chosen manually to estimate each target property (Figure 
5). In other words, this method created 20 regression 
models for each data set to estimate missing regions of 20 
logs, each with its specific training data. Not all of them 
needed to be estimated because they were complete or did 
not have their own character for regression, as in the case 
of lithostratigraphy logs (GROUP and FORMATION).  

 

Figure 5 – Targets and their respective training data for 
missing data imputation. 

 

Wavelet Transform 

We decided to use the continuous wavelet transform 
(CWT) to generate attributes that would better separate 
classes that are difficult to differentiate, such as Shale and 
Shale/Sandstone. These facies with similar properties can 
be confused during the prediction, so a more qualitative 
analysis is needed. Perez-Muñoz et al. (2013) use wavelet 
transforms in different logs to correlate wavelet coefficients 
with sedimentary sequences to better identify facies. 

The idea here is to use CWT as an auxiliary feature to 
identify facies transitions by the signal pattern, which would 
help to differentiate lithologies. The analysis of the signal 
spectrum creates qualitative models to identify the physical 
properties of the well. This study used the Morlet wavelet 
transform on the GR log to generate power and phase 
spectra (Figure 6). Three equidistant power and phase 
spectra, covering the whole CWT range, were added to the 
model for each data set as new data attributes. 

 

Figure 6 - GR log, facies and scalograms using Morlet 
wavelet transform for well 36/7-3 as example. 

 

Feature Selection 

This study selected the features that an interpreter would 
probably choose to identify the facies, as these logs have 
a greater petrophysical and spatial character. They are 
X_LOC, Y_LOC, Z_LOC, RDEP, GROUP, CALI, GR, 
RHOB, NPHI, PEF, DTC, SP and DRHO. Logs that 
originally had many missing values were not selected as 
they could add some uncertainty to the model. 

Feature augmentation 

Feature engineering is the process of creating additional 
features from the data to improve the model performance. 
This work applies two techniques: augment feature by 
gradient and polynomial expansion. 

It is assumed that facies in neighboring layers have strong 
correlation, considering the physical nature of rock strata. 
Bestagini et al. (2017) proposes to employ the forward 
difference of a feature f in relation to depth, expecting that 
features in layers d+1 can help to classify a sample in 
position d: 

𝑓𝑑,𝑤
𝑛𝑒𝑤 =

𝑓𝑑+1,𝑤 − 𝑓𝑑,𝑤
𝑑𝑒𝑝𝑡ℎ𝑑+1,𝑤 − 𝑑𝑒𝑝𝑡ℎ𝑑,𝑤

 

where all operations are applied elementwise at depth d for 
each well w. The process creates a new feature for each 
existing one and then adds to the data. 

The new combined set of features is then applied to an 
automatically polynomial expansion. This method returns 
polynomial combinations of features according to a degree. 
For example, a second-degree combination between three 
features returns the following new ones: 

[a, b, c]² = a, b, c, ab, ac, bc, a², b², c², abc 

These new attributes add information to the data and can 
capture relationships that did not exist before, thus 
increasing the predictive capacity of the model (Galli, 
2020). Even if some of the augmented features might have 
no physical meaning, this is not a problem. Gradient 
boosting classifier will take care of non-informative features 
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by avoiding selecting them for tree creation at training time 
(Bestagini et al., 2017). 

Shoulder Effect Removal  

Commonly, facies interpreted from logs do not truly 
represent the lithology transitions due to the sampling rate 
of the well (about 15 cm). Therefore, two samples were 
removed at each facies limit to reduce the uncertainty that 
could be added to the model. 

Data Split 

The training data already contains more than 1 million 
samples and after all the steps of features generation, it 
becomes difficult to use this big data to make test runs and 
evaluate the model performance. This study uses the 
learning curve technique to identify an ideal reduced 
amount of samples so that your model does not lose 
important information during training. 

The process evaluates the model accuracy with predictions 
about the training data itself and in cross-validation as the 
number of samples increases (Figure 7). The ideal value is 
determined from the point at which the curves are almost 
converging. Beyond that, unlikely more samples would 
significantly increase the accuracy of your model. 

This technique indicated an ideal number of about 100 
thousand samples, which were selected as 9 random wells 
from the training data. Another 5 wells of the same data 
were chosen for validation. Several processing steps were 
tested on this reduced data and, when maximum 
performance was achieved, these steps were applied on 
the original training data. 

 

Figure 7 - Learning curve to indicate the ideal number of 
samples to be used in the training data for validation steps. 

 

Extreme Gradient Boosting (XGBoost) 

This work uses the XGBoost algorithm for the electrofacies 
classification. It uses ensembles of decision trees to boost 
the algorithm performance (boosted trees). It creates weak 
models and each model tries to correct the errors in the 
previous one (Dietterich, 2000; Chen & Guestrin, 2016).  
This process continues until the prediction is made 
correctly or up to a maximum addition of models. 

XGBoost implements gradient boosting that is important to 
avoid overfitting. The process updates the new model with 
the latest prediction, minimizing the objective function by 
gradient descent (Friedman, 2001; Chen & Guestrin, 
2016).  

Facies Refinement 

After prediction, if there is only one sample with facies 
different from neighboring, it may be that this sample 
represents an outlier and should be treated as a 
classification error (Bestagini et al., 2017). To solve this 
problem, it was decided to replace one or two isolated 
samples between similar strata of facies with the lithology 
of the predominant neighboring rock. 

Performance metric 

This work will use a confusion matrix to estimate the 
classification performance and the precision metric to 
evaluate how accurate is the model out of the predicted 
facies (Figure 8). Also, the competition suggested using a 
relative penalty matrix to assess the model performance. It 
works as a confusion matrix with a geological character 
that penalizes the errors of the interpreter (Figure 9). The 
sample penalty ranges from 1.375 for lighter errors to 
4.000 for more serious ones. For example, inferring a 
region like dolomite, which was coal, would add a 
maximum penalty to your model. The predictions are then 
evaluated using the following function S: 

𝑆 = −
1

𝑁
∑ 𝐴ŷ𝑖𝑦𝑖

𝑁

𝑖=0
 

where A represents the matrix scores, N is the number of 
samples, ŷ𝑖 is the real facies and 𝑦𝑖 is the predicted facies.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Figure 8 - Representation of how a confusion matrix works 
and its relation to the precision metric. 

 

Figure 9 - Penalty matrix used by the competition to 
penalize errors according to the real and estimated facies. 

 

Results 

First, the model performance on the ten wells of test data 
1 achieved an accuracy of 80% and a relative penalty of -
0.5037. The classification on test data 2 also reached an 
accuracy of 80% and a relative penalty of -0.4792. These 
results indicate a relevant performance for the model given 
the large number of samples and facies (Figure 10). 
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Figure 10 – Electrofacies classification of each well from test data 1 and 2, respectively. The facies on the left represent the 
real lithologies and the ones on the right represent the prediction. 

When analyzing the precision metric in the confusion 
matrices, it can be seen that the model presented greater 
difficulty in correctly identifying samples from 
Sandstone/Shale, Limestone, Dolomite, Marl and Tuff 
(Figure 11). These facies are mostly confused with Shale. 
This can be explained by the large volume of Shale 
samples in the training data, which adds more weight to the 
model to estimate these facies. On the positive side, the 
classification achieves high precision for the most 
prevalent facies (Shale and Sandstone) and less common 
facies such as Chalk, Anhydrite, Halite and Coal. 

In general, common errors, such as confusion between 
Shale and Shale/Sandstone, and Limestone with Chalk 
and Marl, are understandable since these rocks have 
similar properties. These errors are common even in non-
automated interpretations through the reading of well logs. 
We realized that applying wavelet transform and feature 
augmentation were more effective in separate classes than 
oversampling methods. 

These strategies with efficient imputation helped to obtain 
a better model performance. The algorithm would achieve 
relative penalties of -0.5578 and -0.5020 for test data 1 and 



 PETROPHYSICAL GUIDED PRECONDITIONING APPLIED TO ELECTROFACIES CLASSIFICATION BY MACHINE LEARNING 
 ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Seventeenth International Congress of the Brazilian Geophysical Society 

6 

2, respectively, without these three preconditioning steps. 
This proves that the estimation of values by regression 
instead of regions with missing values helps to create more 
reliable information; and the spatial data augmentation 
seeks a more detailed class differentiation. 

 

 

Figure 11 – Confusion matrices of test data 1 and 2 with 
precision indication for each facies. 

 

Conclusions 

We show in this study the possibility of obtaining high 
performance from an automated interpretation and 
optimization of the interpreter's time. This work adopted 
petrophysical perspective to specialize preprocessing to 
perform imputation, feature selection and engineering 
using wavelet transform to help differentiate specific 
lithologies. All the process concentrated on validation 
strategies in a reduced data to save time and gain 
information to define the ideal model. 
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