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Abstract 

I present a machine learning application to perform log 
prediction and facies classification in the Panoma gas field. 
The training set is composed of two wells without the 
photoelectric effect (PE) log and one well with missing 
values. Before predicting the PE log in two wells, I deal with 
a few missing data. To predict the logs, I perform feature 
augmentation in the input logs and generate new logs with 
a polynomial combination and a low pass filter in wavelet 
domain. Then, I predict the PE log with the random forest 
algorithm. In this case, the nested cross validation is used 
to model selection and hyperparameters tuning. The well 
Churchman Bible is picked as test well and the score of 
72% is achieved on the PE prediction. Both predicted logs 
are aggregated to the input logs and a new feature 
augmentation is performed. The new training data is 
generated aggregating features at neighboring depths and 
with the vertical gradient. For classification, I used the 
extreme gradient boosting algorithm and the leave two 
wells out cross validation to model selection and 
hyperparameter tuning. The score of 58% is achieved in 
facies classification on the same test set as prediction. 

Introduction 

Log estimation, or prediction, is a popular technique in 
geoscience because some well logs are not acquired 
through the interest area along the well or simply are not 
acquired (Bader et al., 2019; Pham et al., 2020). Still 
regarding well logs, facies classification can be performed 
in well logs cutoffs (Ma and Zhang, 2019, pp. 232) or from 
outcomes of seismic inversion (Pendrel and Schouten, 
2020), for example. Historically, the knowledge-driven 
method, where empirical or theoretical knowledge is used 
to predict a log or classify facies, has being used 
(Greenberg and Castagna, 1992; Allo, 2019). Alternatively, 
the data-driven method, i.e., machine learning, which 
builds computational models that use inference and pattern 
recognition instead of explicit sets of rules, has being used 
for a while (Baldwin et al., 1990; Wong et al., 1995) and its 
popularity increases every day (Dramsch, 2020). 

In the literature, there are several works where well logs 
are predicted with machine learning techniques, for 
instance: Huang et al. (1996) predicted the permeability, 
Eshkalak et al. (2014) predicted geomechanical logs for an 
unconventional reservoir, Akinnikawe et al. (2018) 

predicted the photoelectric effect (PE) log and Gupta et al. 
(2019) predicted the sonic (Vp and Vs) and hardness.  

Distinct machine learning techniques are being used for 
facies classification, for instance: Rogers et al. (1992) used 
neural networks, Cui et al. (2017) applied the principal 
component analysis, Nishitsuji and Exley (2019) used 
support vector machine and deep learning. In addition, 
Yenwongfai et al. (2019) integrate facies and inversions 
with machine learning.  

Regarding the Panoma gas field, Dubois et al. (2007) used 
artificial neural networks to perform facies classification. 
Hall (2016a) used support vector machine and proposed a 
contest with the Society of Exploration Geophysicists 
(SEG), then this dataset was highlighted. The results of 
SEG contest presented in Hall and Hall (2017) show that 
the top-ranked competitors used extreme gradient boosted 
trees (xgboost). Since then, works with this dataset has 
being presented by many authors, e.g.: Bestagini et al. 
(2017) and Zhang and Zhan (2017) used the xgboost to 
facies classification. With another approach, Mandal and 
Rezaee (2019) and Mardani (2020) compared the 
classification results with distinct algorithms. Mandal and 
Rezaee (2019) computed three synthetic logs (neutron-
porosity, density-porosity, and bulk density) before predict 
the PE log. 

In this work, departing from seven wells in the training set, 
I impute missing values in the PE log in one well and 
predict the PE log from two wells. Then, I aggregate these 
wells to the training data in order to perform facies 
classification. Distinct feature augmentation techniques 
are used in both log prediction and facies classification. I 
used the random forest algorithm (Breiman, 2001) for log 
prediction and the extreme gradient boosting (Chen and 
Guestrin, 2016) for facies classification. Focusing on the 
generalization of the models, the hyperparameters were 
tuned with the nested and the leave two out cross 
validation, respectively. The well Churchman Bible is 
picked as test data, instead of the so used Shankle well. 
The test well is chosen because it has all facies and a large 
number of samples related to facies of interest. This 
scenario makes even more challenger the facies 
classification, in addition to the small number of samples in 
the training dataset. The scores of 72% are achieve on the 
PE prediction and of 58% on the facies classification. 

Dataset 

The Panoma field, located in southwest Kansas and 
northwest Oklahoma (Figure 1), constitute the largest gas-
producing area in North America (Dubois et al., 2007). The 
dataset consists of 10 wells labeled in Figures 1 and 2, 
where the well ‘Recruit F9’ is a pseudo-well generate to 
better represent the facies Phylloid-algal bafflestone (Hall, 
2016b). There are 4149 samples per well log (features) in 
the dataset, except by the PE log which has 3232 samples. 
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Most of these wells provide seven features (five well log 
measurements and two indicator variables) and a facies 
label at every 0.15 m depth intervals. The available well 
logs are: gamma ray (GR), resistivity (ILD_log10), 
photoelectric effect (PE), neutron-density porosity 
difference (DeltaPHI) and average neutron-density 
porosity (PHIND). The two geologic constraining variables 
are: nonmarine/marine indicator (NM_M) and relative 
position (RELPOS). RELPOS is the position of a sample 
with respect to the base of its respective NM_M interval. 
The PE log has missing values in one well and is not 
available in two others. 

 

Figure 1 – Map showing the study area, outline of the 
Panoma field, and nine wells labeled and located by black 
triangles. The inset shows the location in the central part of 
the United States of America. Modified after Dubois et. al 
(2007). 

There are nine facies classes (numbered 1–9) identified in 
the dataset (Dubois et al., 2007; Hall, 2016a) and 
described in Table 1. Notice that not all of these facies are 
completely discrete; some gradually blend in to one 
another. Misclassification of these neighboring facies can 
be expected to occur. The Adjacent Facies column in Table 
1 lists these related classes. Facies 6–8, which correspond 
to Dolomite (D), Packstone-grainstone (PS) and Phylloid-
algal bafflestone (BS), are highlighted in Table 1 because 
they are the more critical facies since they are the most 
significant in terms of reservoir storage and flow (Dubois et 
al., 2007). 

Figure 2 shows the distribution of facies for each well, 
labeled above. Notice that the facies distribution is 
imbalanced; in fact, not all facies are available in all wells. 
The last panel shows the distribution of all facies, it’s 
remarkable the imbalance of the facies D and BS, two of 
the most significant in terms of reservoir. 

Figure 3 shows the relationship among all well logs, the 
samples are colored with the corresponding facies. In the 
diagonal, a kernel density estimate plot is drawn to show 
the marginal distribution of the data. Notice that, it is not 

clear from these cross-plots the relationship between the 
log measurements and the facies labels. Therefore, with 
these data, propose a criterion to facies classification is not 
straightforward. 

Table 1 - Facies labels with their descriptions (Hall, 
2016a). The most important facies according to Dubois et 
al. (2007) are highlighted in green. 

Facies Description Label 
Adjacent 
Facies 

1 
Nonmarine 
sandstone SS 2 

2 

Nonmarine 
coarse 

siltstone 
CSiS 1,3 

3 
Nonmarine 

fine siltstone FSiS 2 

4 

Marine 
siltstone and 

shale 
SiSh 5 

5 Mudstone MS 4,6 

6 Wackestone WS 5,7,8 

7 Dolomite D 6,8 

8 
Packstone-
grainstone PS 6,7,9 

9 
Phylloid-algal 
bafflestone BS 7,8 

 

Figure 2 – Distribution of facies for each well, the well 
names are shown over each plot. The last panel shows the 
distribution of all facies. 

Method 

This work is divided in two parts: first, the photoelectric 
effect (PE) log is imputed for a well and computed for other 
two wells, then these wells are added to the training 
dataset to perform the facies classification. Both steps are 
preceded by distinct feature augmentation techniques. 

The well Churchman Bible is used as test dataset, i.e., the 
quality of the regressor (the prediction of the PE log) and 
of the classifier (the facies classification) will be evaluated 
on this well. All other nine wells are used as training dataset 
for facies classification, totaling 2840 samples per feature. 



MELO, F.F. 
 ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Seventeenth International Congress of the Brazilian Geophysical Society 

3

 

Figure 3 – Cross-plots from the well logs colored with 
facies classification.  

The well Recruit F9 has 12 missing values for the PE log, 
so I performed data imputation assigning the value of the 
mean of the samples to the missing ones. The wells 
Alexander D and Kimzey A don’t have the PE log; 
therefore, these logs are predicted using the Random 
Forest regressor (Breiman, 2001, Pedregosa et al., 2011), 
which is an ensemble of multiple decision trees.  

Before log prediction, is necessary to perform feature 
augmentation, which generates new features from the 
available ones. In this case, it adds non-linearities 
computing quadratic expansion and by considering all 
second order interaction terms as in Bestagini et al. (2017). 
In addition, a low pass filter with the 1D discrete wavelet 
transform (Mallat, 1999; Souza-Feliciano et al., 2018; Lee 
et al., 2019) is applied in the logs. The transformation from 
depth to wavelet domain was performed with the wavelet 
‘Coiflets 4’ and the coefficients were filtered with the soft 
threshold. Therefore, the training set moves from six to 
twenty features before estimate the PE logs. Notice that 
the logs NM_N and RELPOS are not used in feature 
augmentation because it would make no geophysical 
sense. 

Due to the small training dataset (seven wells, with each of 
the six features containing 2840 samples), I used the 
nested cross-validation (CV) for hyperparameter tuning 
and model selection (Varma and Simon, 2006; Cawley and 
Talbot, 2010). Nested CV estimates the generalization 
error of the underlying model and its hyperparameter 
search. It shows a low bias in practice where reserving 
data for independent test sets is not feasible (Raschka, 
2018). According to Raschka and Mirjalili (2017), in nested 
CV, there is an outer k-fold cross-validation loop to split the 
data into training and test folds, and an inner loop to select 
the model using k-fold cross-validation on the training fold. 
After model selection, the test fold is then used to evaluate 
the model performance. Specifically, I used a 7 x 2 cross-

validation and a model with a Random Forest regressor 
(Pedregosa et al., 2011) was defined. 

The feature importance is computed to check the valid of 
the augmented features. Feature importance can be 
measured by looking at how much the score decreases 
when a feature from the validation set is permuted. 

After prediction of the PE logs into the two missing wells, 
these wells are grouped with the seven wells used as 
training dataset to compound the new training set for facies 
classification. 

Before facies classification I performed a new feature 
augmentation, distinct from the one for regression. Here, I 
use two distinct operations: I compute the vertical gradient 
as in Bestagini et al. (2017) and include a small window to 
aggregate features at neighboring depths as Lukas Mosser 
and Alfredo de la Fuente in Hall (2016b) and Hall and Hall 
(2017). Therefore, the features are augmented from seven 
to twenty-eight to perform facies classification. 

To perform facies classification, I use the Extreme Gradient 
Boosting (Chen and Guestrin, 2016), which is an optimized 
gradient boosting (Friedman, 2001). This technique 
combines many weak learning models together to create a 
strong predictive model (Raschka and Mirjalili, 2017). It 
works by sequentially adding predictors to an ensemble, 
each one correcting its predecessor, i.e., it tries to fit the 
new predictor to the residual errors made by the previous 
predictor (Géron, 2019). For cross-validation, I used the 
Leave 2 Groups Out cross-validator (Hall, 2016b), so all 
wells were used in the training set except by two that were 
used in the validation set. These two wells were iteratively 
update, allowing twenty-eight possibilities for generating a 
better model. 

For the post-processing, I follow the approach from 
Bestagini et al. (2017). Assuming that facies at neighboring 
layers are correlated, a median filter is applied to avoid 
outliers in the facies classification. Thus, the spurious 
values are replaced by the most present facies in their 
neighborhood. 

The codes used on this work are available at: 
https://github.com/ffigura/SBGf_ ML_gas/ 

Results 

Figure 4 shows the input well logs, facies and some 
augmented features to predict the PE logs, from the well 
Nolan. The logs are: GR, ILD_log10, DeltaPHI, PHIND, PE 
and Facies, in the upper part, and NM_M and RELPOS, in 
the lower part. Moreover, the lower part displays some logs 
generated from feature augmentation: the quadratic 
expansion generated by the squared GR (GR2), the 
second order interaction generated by the multiplication of 
GR by DeltaPHI (GR x DeltaPHI) and the application of the 
low pass filter in wavelet domain generated the GR at low 
frequency (GR low). The feature augmentation produced 
fourteen logs; for logical reasons, other augmented logs 
are omitted in Figure 4; however, they are used in the 
regression part. Notice that to predict the PE logs, the 
facies logs are not used. 
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Figure 4 – Well logs and facies from the well Nolan. The 
upper row shows the input logs and facies. The lower row 
shows two input logs on the left-hand side and three 
examples of feature augmentation for this well on the right-
hand side: the quadratic expansion is shown in the first 
track with the squared GR, the second order interaction is 
shown by the GR multiplied by DeltaPHI, and the last track 
shows the result of the GR after application of the low pass 
filter in wavelet domain. 

Figure 5 shows some results of the prediction of the PE 
logs. Figure 5a shows the feature importance on the 
prediction of the test data. As expected, the NM_M 
produced the most valuable information for the regressor 
followed by PHIND, then, some augmented features 
appear before other input logs. The most important 
augmented features on the test data are: PHIND^2 (the 
squared PHIND), GR PHIND (the multiplication of GR by 
PHIND) and ILD_log10 low (the log ILD_log10 after the low 
pass filter in wavelet domain). This behavior shows the 
value of the augmented features in the prediction of the PE 
log. The cross-validation score is 81% with standard 
deviation of +/- 0.016. Figure 5b shows the true PE log (in 
black) and the predicted (in orange) on the well Nolan, 
used in the training set. Figure 5c shows the true (black) 

and the predicted (orange) PE log on the well Churchman 
Bible, the test well. The good fit shown in Figure 5c can be 
verified qualitatively by the score of 72% on the test data, 
i.e., the model is not overfitted. 

 

Figure 5 – Prediction results. a) Feature importance for the 
test set, the mean is in orange. Three augmented features 
appear with high importance among the five most 
important. b) True (continuous black line) and predicted 
(dashed orange line) logs from the well Nolan, this well is 
part of the training set. c) True (continuous black line) and 
predicted (dashed orange line) logs from the test set, well 
Churchman Bible. 

Figure 6 shows some input logs, the true and the predicted 
facies for the test set, the well Churchman Bible. The 
accuracy of the classification on test set is 58% and the 
accuracy on the classification for the adjacent facies is 
86%. I.e., most of the adjacent facies were correctly 
predicted, so there were no huge gaps in the prediction, 
the adjacent facies are described in Table 1. 

Figure 7 shows the confusion matrix. Most of the 
unsatisfactory results are related to adjacent facies. For 
instance, SS is wrongly predicted as CSiS and FSiS. The 
same happens with MS, that is mostly wrongly predicted 
as WS, adjacent facies. The nonmarine facies SS, CSiS 
and FSiS are mostly wrongly predicted among them, i.e., 
the NM_M indicator had huge impact in the model. Recall 
that the facies assigned as BS, PS and D are more critical 
facies since they are the most significant in terms of 
reservoir storage and flow. The facies BS have 90% of 
correct prediction, the facies PS have 57% of correct 
prediction and the facies D have almost 6% of correct 
prediction. The well Recruit 9 was generated to better 
represent the facies Phylloid-algal bafflestone (PS) and 
probably had an important impact in the prediction because 
the test set have more PS than any other well, except the 
well Recruit 9. Notice that, dolomites (D) are not so 
abundant in the training dataset (last panel on Figure 2). In 
fact, the test set have more dolomites than any other well 
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in the training set. Therefore, the model has insufficient 
data from which to learn a reliable pattern to identify this 
rock type.  

 

Figure 6 – Facies classification on the test set, the well 
Churchman Bible. Some input logs with the true and 
predicted facies. The accuracy of the classification on test 
set is 58% and the accuracy for the adjacent facies is 86%. 

 

Figure 7 – Confusion matrix. The facies assigned as BS, 
PS and D are more critical in this work. 

Conclusions 

I proposed an approach to predict the photoelectric effect 
log and classify facies in the Panoma gas field. The 
approach is based on training a model with nine wells and 
testing the model in the well Churchman Bible. Five 
measured well logs and two geologic constraining 
variables are considered as input features. The prediction 
of the PE log in two wells with a random forest model is 
preceded by feature augmentation using the quadratic 
expansion, a second order interaction and the low pass 
filter in wavelet domain. The facies classification is 
performed with an extreme gradient boosted trees model. 
This step was also preceded by feature augmentation, in 
this case aggregating features at neighboring depths and 

with the vertical gradient. The feature augmentation was 
successful in both prediction and classification. The PE 
prediction score in the test well shown the good result of 
this approach. The results for facies classification were 
acceptable because of the samples limitations. The scores 
on adjacent facies and on critical facies are good and 
shown the effectiveness of the proposed approach. 
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