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Abstract 

Atmospheric profiles are pivotal for satellite data 
calibration. In this work, we assess the use of the 
Weather Research and Forecasting (WRF) model to 
refine NCEP Climate Forecast System Version 2 (CFSv2) 
reanalysis atmospheric profiles. In addition, a sensitivity 
analysis was conducted to Yonsei University (YSU) and 
Mellor–Yamada–Janjic (MYJ) Planetary Boundary Layer 
(PBL) parameterization schemes. WRF simulations were 
performed using two nested grids with horizontal 
resolutions of 12 and 3 km. Estimated profiles were 
evaluated against radiosonde observations at Southern 
Brazil. WRF satisfactorily simulates vertical profiles of 
water vapor mixing ratio (q) and potential temperature (θ). 
The comparison yielded high correlation coefficients 
(mostly higher than 0.9), low average biases (moist and 
cold), and overall RMSE of 0.84 g/Kg and 2.30 K for q 
and θ, respectively. There is no significant statistical 
difference in the profiles on increasing the horizontal 
resolution. The overall results did not indicate any 
preferred PBL scheme that outperforms in all cases. The 
WRF model and even data directly from NCEP CFSv2 
reanalysis are useful to represent the vertical structure of 
the atmosphere. 

 

Introduction 

The vertical distribution of atmospheric parameters is 
essential to modeling weather and climate on regional 
and global scales (Sobrino et al., 2015). Atmospheric 
temperature and water vapor play a crucial role in the 
thermodynamic state of the atmosphere (De Rosa et al., 
2020; Jiang et al., 2019; Sherwood et al., 2010; Thorne et 
al., 2005).  An important application of vertical profiles is 
in the atmospheric correction of thermal infrared (TIR) 
remote sensing data to retrieve land surface temperature 
(LST) information (Barsi et al., 2003; Coll et al., 2012; 
Jiménez-Muñoz et al., 2010; Meng and Cheng, 2018; 
Rosas et al., 2017). LST is a key parameter indicating the 
relationship between land-atmosphere since it is 
connected to the Earth’s surface energy balance (Tardy 
et al., 2016). 

A radiosonde profile can characterize the atmospheric 
structure at a specific location with high precision. 
However, it is only available at limited sites (usually in 
urban areas) and times (typically 00:00 and 12:00 UTC) 
(Alghamdi, 2020; De Rosa et al., 2020; Filioglou et al., 
2017). So radiosonde-recorded data is particularly 
regarded as the truth value in validation studies and 
calibration of satellite data (Divakarla et al., 2006; Meng 
and Cheng, 2018; Rao et al., 2020). 

Reanalysis data from global numerical models are a 
practical alternative to the radiosondes spatiotemporal 
limitations (Rosas et al., 2017). In these datasets, 
numerical weather prediction outputs, data assimilation 
techniques, and observations from several data sources 
are combined to characterize the state of the atmosphere 
at different spatiotemporal scales. The resulting data set 
is global gridded with an extended homogeneous time 
series (Alghamdi, 2020; Mooney et al., 2011). Even 
though global reanalysis data are widely applied in 
scientific research, their accuracy is generally lower for 
regions with poor permanent observatories coverage, 
such as many Southern Hemisphere regions and the 
oceans (Chen and Liu, 2016; Chen et al., 2014). 
Moreover, reanalysis data may have the accuracy of 
meteorological phenomena on a sub-grid or variable time 
scale affected since they are spaced at grid points with 
time intervals of typically 6 h (Tonooka, 2001). 

Therefore, coarse global-scale data may not be suitable 
for local use. Modern Numerical Weather Prediction  
(NWP) models enjoy great computing performance and 
parameterization of physical processes to improve the 
reanalysis data accuracy (Evans et al., 2012; Prasad et 
al., 2020). Mesoscale atmospheric models are used in 
local areas with global models data as the boundary and 
initial conditions (Hassanli and Rahimzadegan, 2019; 
Wee et al., 2012). The Weather Research and 
Forecasting (WRF) model (Skamarock et al., 2019) is a 
state-of-the-art atmospheric modeling system designed 
for both meteorological research and NWP (Onwukwe 
and Jackson, 2020; Powers et al., 2017; Prasad et al., 
2020). Non-hydrostatic, community-based, free, and 
open-source, the WRF model provides specialized 
resources for a variety of applications in terrestrial 
systems (Powers et al., 2017; Skamarock et al., 2019). It 
is among the most frequently used mesoscale models for 
estimating high-resolution meteorological data (Hassanli 
and Rahimzadegan, 2019; Knievel et al., 2007; Powers et 
al., 2017). 
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Nevertheless, many atmospheric physical processes 
cannot be completely resolved by the numerical model 
and must be parameterized (García-Díez et al., 2013; 
Stensrud, 2007; Xie et al., 2012). Among them, the 
Planetary Boundary Layer (PBL) parameterization is 
crucial to the simulation of meteorological properties (Hu 
et al., 2010; Jia and Zhang, 2020; Xie et al., 2012). PBL is 
the portion of the troposphere closest to the ground level, 
characterized by friction and turbulent mixing (Stull, 
2017). Vertical profiles of temperature and water vapor 
can exhibit variances among the PBL schemes across the 
PBL depth and subsequently the entire atmospheric 
column and the whole model domain (Chaouch et al., 
2017; Cuchiara et al., 2014; Hariprasad et al., 2014; Hu et 
al., 2010; Xie et al., 2012). Additionally, PBL is where the 
highest concentrations of water vapor in the atmosphere 
are located, which is the principal factor for atmospheric 
effects in TIR optical satellite images (Jiménez-Muñoz et 
al., 2010; Sobrino et al., 1991). The WRF model has a 
wide range of physical parameterizations options, and so 
it is with boundary layer schemes. Several sensitivity 
studies to PBL schemes have been carried out (Chaouch 
et al., 2017; Cuchiara et al., 2014; García-Díez et al., 
2013; Hariprasad et al., 2014; Hu et al., 2010; Onwukwe 
and Jackson, 2020; Ruiz et al., 2010). But there is a 
general lack of sensitivity studies on the effect of different 
PBL parameterization schemes over South America (Jia 
and Zhang, 2020). 

This study aims to assess the reasonableness of the 
WRF as a tool to downscaling reanalyze atmospheric 
profiles to their use in future assessments for atmospheric 
correction of TIR remote sensing images. Thus, we 
expect to generate high-resolution vertical profiles as an 
alternative to the need for a radiosonde. We conducted 
WRF simulations using as initial and boundary conditions 
the National Centers for Environmental Prediction (NCEP) 
Climate Forecast System Version 2 (CFSv2) (Saha et al., 
2014) reanalysis data. In addition, a sensitivity analysis 
was carried out with the two widely used PBL schemes: 
Yonsei University (YSU) and Mellor–Yamada–Janjic 
(MYJ). Since each PBL scheme is tied to a particular 
surface-layer scheme, Revised MM5 and Eta Similarity 
schemes were used, respectively. The model simulations 
were evaluated with available radiosonde observations at 
a station in Southern Brazil. 

  

Method 

Numerical simulations were performed using the WRF 
Model version 4.1.2 with the Advanced Research WRF 
(ARW) dynamical solver (Skamarock et al., 2019; Wang 
et al., 2019). The models' domain was configured with two 
nested grids with horizontal resolutions of 12 km (G12) 
and 3 km (G03) (4:1 parent grid ratio), in one-way mode, 
and 33 sigma vertical levels with 50 hPa top pressure 
value. The nested grids were centered at the radiosonde 
station of the Porto Alegre International Airport (SBPA), 
Rio Grande do Sul State, Brazil. The station is located at 
30.00º S and 51.18º W, with a 3.0 m elevation above 
mean sea level. In SBPA station, radiosondes are 
launched twice a day, at 00:00 and 12:00 UTC. These 
radiosonde observations will serve as ground truth for 

validation and evaluation of the simulations. Figure 1 
shows the model grids and also an asterisk that indicates 
where the simulation results were extracted, it refers to 
the grid point closest to the SBPA station. 

 
Figure 1 - WRF nested grids used in the study, with 
horizontal resolutions of 12 km (light gray) and 3 km (dark 
gray). The asterisk indicates the point where the results 
were extracted. 

The WRF model set ups are resumed in Table 1. A 
sensitivity experiment was conducted by changing the 
PBL and the surface-layer parameterization schemes. 
The YSU PBL scheme (Hong et al., 2006) was used tied 
to the Revised MM5 surface-layer scheme (Jiménez et 
al., 2012), and MYJ (Janjić, 1994) combined with Eta 
Similarity (Janjić, 2002, 1996, 1994; Monin and Obukhov, 
1954). Similar choices of parameterization schemes were 
used in Santos and Nascimento (2016). 

 
Table 1 - Overview of WRF model configuration. 

WRF Model Configuration  

Version  4.1.2 

Dynamical solver ARW 

Boundary conditions NCEP CFSv2 

Map projection  Lambert 

Grid size Domain 1: (119 x 116) x 33 

Domain 2: (169 x 165) x 33 

Horizontal resolution Domain 1: 12 km 

Domain 2: 3 km 

Nesting One-way 

Time step  72s 

Static geographical data USGS 

Cloud Microphysics  Purdue Lin 

PBL  1) YSU 

2) MYJ 

Cumulus BMJ (Domain 1 only) 
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Shortwave Radiation Dudhia 

Longwave Radiation RRTM 

LSM Unified NOAH 

Surface-layer 1) Revised MM5 

2) Eta Similarity 

 

We are particularly interested in the performance of high-
resolution vertical profiles for atmospheric correction of 
TIR remote sensing data purposes. So our study is 
developed for dates coinciding with the Landsat 8 
passage over the SBPA under clear-sky conditions. Table 
2 shows the dates used in this work, i.e., the 27 days 
when clear-sky Landsat 8 images were available from 
2013 to 2019. In addition, we use the 12:00 UTC 
radiosonde profiles as reference, since this is the closest 
time to the Landsat 8 crossing time over the study area 
(~13 UTC). 

The study consisted of 54 runs of 24-h duration for the 27 
selected dates in Table 2: a simulation with YSU and 
another with MJY PBL option for each of the days. The 
resulting profiles were extracted at 12:00 UTC, to match 
with the in situ radiosonde observations. So the first 12 h 
of the simulation was considered for spin up time. 

 
Table 2 - Dates used to perform the study. 

Year Day and Month (Case Day) 

2013 18 Nov (1) 04 Dec (2) 
 

2014 06 Feb (3) 20 Oct (4) 07 Dec (5) 

2015 24 Jan (6) 25 Feb (7) 08 Nov (8) 

2016 15 Mar (9) 22 Aug (10) 12 Dec (11) 

2017 03 Apr (12) 22 Jun (13) 24 Jul (14) 

 25 Aug (15) 13 Nov (16) 15 Dec (17) 

2018 17 Feb (18) 22 Apr (19) 09 Jun (20) 

 28 Aug (21) 29 Sep (22) 16 Nov (23) 

2019 24 Mar (24) 09 Apr (25) 15 Aug (26) 

 19 Nov (27)   

 

To evaluate the accuracy of the model simulations and 
the impact of the PBL schemes, we take into account 
vertical profiles of water vapor mixing ratio (q) and 
potential temperature (θ). A point validation technique 
was used (Onwukwe and Jackson, 2020). Atmospheric 
profiles for model grid point corresponding to the ground 
location of the SBPA station (Figure 1) were retrieved, at 
12 UTC. Namely, the WRF resulting profiles of q and θ for 
G12 and G03, and with both YSU and MYJ schemes 
were intercompared against SBPA observational profiles. 
Besides that, profiles retrieved directly from the CFSv2 
product were included in the comparative analysis to 

assess the performance of the WRF in downscaling 
reanalysis profiles. 

Vertical interpolation for a comparison of model output to 
observations is imperative since the height and pressure 
of model (sigma) levels can vary both spatially and 
temporally in the model domain (Cogan, 2017). 
Therefore, the WRF output data were interpolated from 
the model to the radiosondes vertical levels. The 
interpolation was carried out through a weighted linear 
one (Santos and Nascimento, 2016). The statistical 
criteria used in this paper are Pearson’s correlation 
coefficient (R), bias (mean error), Mean Absolute Error 
(MAE), and Root Mean Square Error (RMSE).  

Results and discussion   

To evaluate the performances of the different atmospheric 
profiles, they were extracted from the grid point closest to 
the SBPA station at 12 UTC. Figure 2 shows an example 
of the vertical distribution of q and θ for the case day 6. It 
indicates a good agreement of CFSv2 reanalysis and all 
WRF settings profiles with the radiosonde observations. 

 
Figure 2 - Vertical profiles of (a) water vapor mixing ratio 
and (b) potential temperature for the case 6 (24-01-2015). 

Figure 3 illustrates the statistical comparison of the 
studied profiles throughout each case day for q and θ. 
While Table 3 presents the average metrics of profiles 
comparison for all evaluated days. The CFSv2 and all 
WRF profiles showed the same high correlation 
coefficient values for the vertical distribution of both q 
(0.96) and θ (0.99). All q profiles showed a mean 
tendency to overestimate the observations (positive bias), 
with CFSv2 showing the highest bias (0.10 g/Kg). The q 

bias of G12 grids was slightly higher than one of the G03. 
On the other hand, the WRF configurations tend to 
underestimate the θ vertical distribution, while CFSv2 
reanalysis tends to overestimate it (see Figure 3a). The 
CFSv2 θ bias was the largest (0.50 K). There was no 
significant difference between the overall biases of WRF 
YSU and MYJ. 

Moreover, the WRF MYJ had the highest MAE for q (0.44 

g/Kg), with a small variation in comparison to WRF YSU 
and CFSv2 (0.43 g/Kg). The θ MAE of the WRF profiles 
was larger: 1.60 K against 1.57 K of the CFSv2. In terms 
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of RMSE, all the WRF sets showed the same value which 
was slightly worse than for the CFSv2 (see Table 3). 

 
Table 3 - Statistical comparison of all q and θ model 
profiles against SBPA radiosonde observations. 

 CFSv2 
WRF 
YSU 
G12 

WRF 
YSU 
G03 

WRF 
MYJ 
G12 

WRF 
MYJ 
G03 

R q 0.96 0.96 0.96 0.96 0.96 

bias q 
[g/Kg] 

0.10 0.04 0.03 0.04 0.03 

MAE q 
[g/Kg] 

0.43 0.43 0.43 0.44 0.44 

RMSE q 
[g/Kg] 

0.82 0.84 0.84 0.84 0.84 

R θ 0.99 0.99 0.99 0.99 0.99 

bias θ 
[K] 

0.50 -0.20 -0.20 -0.20 -0.21 

MAE θ 
[K] 

1.57 1.61 1.61 1.61 1.61 

RMSE θ 
[K] 

2.22 2.30 2.30 2.30 2.30 

 

The RMSE and MAE overall values of the WRF 
simulations were a bit higher than those from NCEP 
CFSv2. However, taking into account each individual 
case day, the WRF model (including all the settings 
analyzed) overcomes the CFSv2 reanalysis in more days 
than the opposite for water vapor mixing ratio profiles. We 
have found WRF settings with the best RMSE in 14 of the 
27 case days and with the best MAE in 19. For potential 
temperature, the WRF settings overcome the CFSv2 in 
13 of the 27 case days. Case day 10 was found as the 
one with the largest discrepancy with observations 
regarding the vertical evolution of θ (RMSEs around 4.6 

K). While in case day 17,e.g., the WRF model notably 
improved the high θ errors from the NCEP CFSv2 
reanalysis (Figures 3e and 3f). 

No significant statistical differences are shown between 
the WRF grids G12 and G03, for both parameterization 
schemes used. In some cases, a finer grid even 
increased the errors. Findings like this have already been 
mentioned in other papers (Diaz et al., 2020; Hassanli 
and Rahimzadegan, 2019; Lin et al., 2018; Mohan and 
Sati, 2016; Pérez-Jordán et al., 2015). These results 
suggest that computation costs can be saved by using a 
coarse horizontal resolution grid, mean-while efficiently 
simulate the vertical profile. Nevertheless, in at least 12 of 
the 27 case days, we have found an improvement in 
statistical metrics when the model went from 12 km to 3 
km horizontal resolution. Hence, such fine grid spacing is 
recommended for high-resolution operational needs 
(Pérez-Jordán et al., 2015). 

No particular PBL parameterization outperformed in all 
cases. Additionally, large differences between the 
schemes were not observed in the vertical distribution of 

the meteorological variables. Scholars have already 
reported this (Chaouch et al., 2017; Cuchiara et al., 2014; 
Hariprasad et al., 2014; Kioutsioukis et al., 2016; Moya-
Álvarez et al., 2020; Tyagi et al., 2018). Our findings 
corroborate with the conclusions of García-Díez et al. 
(2013). The authors outlined that the performance of 
WRF model different settings frequently depends on the 
different atmospheric conditions that prevail on the 
different seasons and times of the day. 

 
Figure 3 - Statistical metrics over the case days: bias, 
MAE, and RMSE for q (a-c) and θ (d-f). 

 

Conclusions 

Analyzing downscaled meteorological data is important to 
diagnose model errors that can propagate to the end 
application, such as the atmospheric correction of optical 
satellite images. In this paper, we assessed the use of 
WRF model version 4.1.2 to downscaling NCEP CFSv2 
reanalysis vertical profiles. A sensitivity analysis was 
conducted with the nonlocal YSU and the local MYJ PBL 
schemes. Validation was performed using radiosonde 
observations at a station in Southern Brazil. The WRF 
model simulated well the vertical profiles of water vapor 
mixing ratio and potential temperature. 

The WRF resulting profiles yielded high correlation 
coefficients, very small biases, and relatively low values 
of RMSE and MAE. However, there is no significant 
difference in statistical overall results of profiles WRF 
varying the horizontal grid resolution from 12 to 3 km, and 
also with those retrieved directly from NCEP CFSv2 
reanalysis. These results indicate that increasing the 
horizontal resolution did not improve significantly the 
quality of the simulated atmospheric profile. Therefore, 
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our findings suggest that there is no special need to 
increase the spatial resolution for many applications (e.g., 
those related to average site atmosphere 
characterization). In such cases, it adds computational 
cost without expressive improvement of the simulated 
profiles. We recommend the use of grid spacing finer than 
3 km for specific high-resolution local usages. 

The sensitivity analysis of the vertical profile simulation to 
YSU and MYJ PBL parameterization revealed that neither 
particular scheme outperforms in all case days. These 
results emphasized that the optimal parameterization 
scheme set varies with local, variable, season, and 
meteorological conditions.  

In conclusion, the WRF model is a useful tool in the 
simulation of water vapor and temperature atmospheric 
profiles. The application of both WRF and NCEP CFSv2 
profiles in the atmospheric correction of remote sensing 
data is promising. With this in mind, further studies are 
underway. 
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