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Abstract 

This work presents two explicit methodologies considering 
adaptive time integrators, applied together with techniques 
of domain subdivision and sub-cycling, for time domain 
analyses of elastodynamic models. The methods are 
accurate, providing reduced period elongation and/or 
amplitude decay errors, and they allow introducing 
adaptive numerical dissipation of spurious oscillations. 
Since the techniques are explicit, they do not need to 
consider any solver routine, standing as very efficient 
methodologies. The discussed α explicit adaptive method 
has the same stability limit as the central difference method 
(CDM), while the β explicit adaptive method has an 
improved stability limit, whose value may be up to twice 
that of the CDM. Subdomain decomposition procedures, 
associated to multiple time-steps and sub-cycling, are also 
considered herein to improve the performance of the 
formulation. Thereby, it is possible to consider higher time-
step values in the analyses, providing lower computational 
costs. In addition, this approach allows the elements of the 
spatially discretized model to march closer to their stability 
limits, improving the accuracy of the analysis. At the end of 
the paper, numerical results are presented in comparison 
to those of the CDM and the explicit generalized α method 
(EG-α), illustrating the effectiveness of the discussed 
approaches. 

Introduction 

Time dependent hyperbolic equations have numerous 
applications in science and engineering development, as 
they make it possible to describe time dependent 
continuous domain physical problems. Nevertheless, they 
are challenging to be solved and their analytical resolution 
is often unfeasible. Therefore, in order to solve these 
equations, numerical methods are commonly used to find 
approximate solutions. These methods usually employ 
step-by-step time integration algorithms, solving initial 
value problems considering a temporal discretization. 
Numerical methods are basically divided into two groups:  
explicit methods [1-9], whose main advantage is that there 
is no need to deal with algorithms for solving systems of 
equations, making them computationally effective, yet with 
stability restrictions; and implicit methods [9-15], which 
provide unconditional stability, but are considerably more 

computationally expensive per time step (for a 
comprehensive review, see [16]).  

In this paper, two explicit formulations with adaptive time 
integrators are studied, considering the implementation of 
sub-cycling techniques to improve the efficiency and 
accuracy of the proposed time integration algorithms. The 
explicit methods developed by Soares [1,9] give the 
following characteristics: (i) they are truly self-starting; (ii) 
based on single-step displacement-velocity relations; (iii) 
allow adaptive algorithmic dissipation; and, (iv) as explicit 
approaches, do not need to consider any solver routine. 
The α explicit adaptive (α-adap) method presents the same 
stability limit as the CDM; and the β explicit adaptive (β-
adap) method has an improved stability limit, whose value 
may be up to twice that of the CDM (the β-adap method 
provides reduced period elongation errors as well). In 
addition, subdomain divisions and local time-step values 
are considered in this work, also taking into account 
automated adaptive evaluations. Thus, more efficient and 
accurate analysis may be enabled. 

The adopted time integration procedures are based on 
adaptive parameters that focus on providing effective 
numerically dissipative algorithms, aiming to eliminate the 
influence of spurious high frequency modes and to reduce 
amplitude decay errors. In this sense, the time integrators 
(α or β) are adaptively computed taking into account the 
maximum sampling frequency of the elements, and the 
local time-step value. For the activation of the adaptive 
parameters, the results of the previous local time steps are 
considered. Thus, by introducing different time-steps into 
the analysis (considering subdomain divisions and sub-
cycling techniques), the performance of the methodologies 
may be enhanced.  

The techniques discussed in this work can be used to solve 
problems of different nature, however, here, elastodynamic 
analyses and geophysical applications are focused. In 
geophysics, it is often necessary to directly analyze very 
heterogeneous domains that feature several layers of 
different materials. In this sense, automatic sub-cycling 
techniques become very attractive, since these different 
layers/media may be efficiently analyzed considering 
proper subdomain divisions. 

Governing equations and time integration strategies 

The governing system of equations describing a dynamic 
model is given by: 

𝐌𝐔̈(t) + 𝐂𝐔̇(t) + 𝐊𝐔(t) = 𝐅(t) (1) 

where 𝐌, 𝐂, and 𝐊 stand for the mass, damping, and 

stiffness matrices, respectively;  𝐔̈(t),  𝐔̇(t) and 𝐔(t) are 
acceleration, velocity, and displacement vectors, 
respectively; and 𝐅(t) stands for the force vector. The initial 
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conditions of the model are given by: 𝐔0 = 𝐔(0) and 𝐔̇0 =
𝐔̇(0), where 𝐔0 and 𝐔̇0 stand for initial displacement and 
velocity vectors, respectively. 

The Finite Element Method (FEM) is used for the spatial 
discretization, since geological problems take great 
advantage of its ability to work with irregular geometries. 
By considering the standard FEM, the domain of the 
problem is divided into elements, allowing the calculation 
of local matrices and vectors, which can then be 
assembled to generate the global matrices 𝐌, 𝐂, and 𝐊, 
and vector 𝐅. 

α - Explicit Adaptive Method 

In this time-marching procedure, the displacements and 
velocities of the model are computed as follows: 

(𝐌e +
1

2
Δt𝐂e) 𝐔̇e

n+1 = ∫ 𝐅e(t) ⅆt
tn+1

tn

+ 𝐌e𝐔̇e
n 

−
1

2
Δt𝐂e𝐔̇e

n − 𝐊e (Δt𝐔e
n +

1

2
αe

nΔt2𝐔̇e
n) 

 

 

(2a) 

𝐔n+1 = 𝐔n +
1

2
Δt𝐔̇n +

1

2
Δt𝐔̇n+1 

 

(2b) 

where ∆𝑡 represents the time-step, and 𝐔n and 𝐔̇̇n are the 

approximations of 𝐔(tn) and 𝐔̇(tn), respectively. In eq. 
(2a), the subscript 𝑒 indicates that a variable is locally 
defined, at an element level. Once eq. (2a) is assembled, 
the velocities of the model can be computed, and the 
displacements can then be evaluated following eq. (2b). 

Considering the 𝛼 parameter (see eq. (2a)), which controls 
numerical damping, the strategy is to adopt α > 1 wherever 
and whenever numerical damping may be necessary, and 

α = 1 otherwise. This is automatically carried out here 
based on an oscillatory criterion controlled by an φ 
parameter, that is calculated at each time step and for each 
element. The calculation of this oscillatory parameter is 

given by: 𝜑𝑒
𝑛 = 𝛴𝑖=1

ⅆ𝑒 ||𝑢𝑖
𝑛 − 𝑢𝑖

𝑛−2| − |𝑢𝑖
𝑛 − 𝑢𝑖

𝑛−1| − |𝑢𝑖
𝑛−1 −

𝑢𝑖
𝑛−2||, where ⅆ𝑒 stands for the total amount of degrees of 

freedom of the element. Therefore, when φ ≠ 0, at least 
one degree of freedom of the element is oscillating. Thus, 
the algorithm activates maximal numerical dissipation at 
the maximal sampling frequency of the element Ωe

𝑚𝑎𝑥, 
effectively dissipating the highest modes of the problem. 
So, when φe

n ≠ 0, 𝛼𝑒
𝑛 assumes the following value: 

αe
act = (−Ωe

𝑚𝑎𝑥 − 4ζe + 4(Ωe
𝑚𝑎𝑥ζe + 1)1/2)/Ωe

𝑚𝑎𝑥 (3) 

where ζe = ςe/(2ρe𝜔𝑒
𝑚𝑎𝑥), and 𝜔𝑒

𝑚𝑎𝑥, ρe and ςe stand for 
physical properties of the medium (maximum natural 
frequency, mass density and viscous damping coefficient, 
respectively). For φe

n = 0, αe
n = 1 is considered. 

β - Explicit Adaptive Method 

In this time-marching procedure, the displacements and 
velocities of the model are computed as follows: 

(𝐌 +
1

2
Δt𝐂) 𝐔̇n+1 = ∫ 𝐅(t) ⅆt
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(4a) 

𝐔n+1 = 𝐔n +
1

2
Δt𝐔̇n +

1

2
Δt𝐔̇n+1 +

1

2
Δt𝐕n+1 (4b) 

where an additional 𝐕n+1 term is introduced into the 
formulation for the displacements, allowing to obtain 
greater stability limits for the explicit analysis. The vector 

𝐕n+1 is given as follows: 

(𝐌e +
1

2
Δt𝐂e) 𝐕e

n+1 = −Δt𝐂e𝐔̇e
n+1 

−
1

8
Δt2𝐊e((βe

n)2𝐔̇e
n + (1 + βe

n)𝐔̇e
n+1) 

 

(5) 

where, analogously to αe
n, the βe

n represents an integration 
parameter whose value varies for each element and for 
each time step of the analysis, controlling the dissipative 
properties of the technique. The strategy adopted for β is 
similar to that for α, i.e., β > 0 is applied wherever and 
whenever numerical damping may be necessary, and β =
0 otherwise. The parameter φ is also used to control the 
activation of numerical dissipation. So, when φe

n ≠ 0, βe
n 

assumes the following value: 
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and, for φe
n = 0, βe

n = 0 is considered. 
 

Sub-cycling 

Sub-cycling is a subdomain decomposition associated with 
computations at several time intervals. This technique 
allows a domain to be discretized considering different 
refinement levels without limiting its explicit time-marching 
solution to be restricted to its shortest critical time step. 
This allows greater time-steps values for different 
subdomains, enabling lower computational costs. Despite 
allowing greater time-steps values for different 
subdomains, enabling lower computational costs, sub-
cycling must be properly considered, once excessive 
subdivisions may provide deterioration in both accuracy 
and efficiency. Here, an automatic algorithm has been 
developed to improve efficiency without compromising 
accuracy.  

The following algorithm is considered to define the 
subdomain decomposition: (i) calculate the critical time-

steps of all elements, finding the smallest 𝛥𝑡𝑒  of the model 
(i.e., 𝛥𝑡𝑏, where 𝛥𝑡𝑏 = min (𝛥𝑡𝑒)), which is the basic time-
step for the controlled subdivision of the domain; (ii) with 
𝛥𝑡𝑏 defined, calculate subsequent time-step values as 
multiple of the power of 2 of this minimal time-step value 

(i.e., calculate 𝛥𝑡𝑖 , where 𝛥𝑡𝑖 = 2(𝑖−1)𝛥𝑡𝑏); (iii) associate 
each element to a computed time-step value (i.e., to 𝛥𝑡𝑖, 
where  𝛥𝑡𝑖 ≤ 𝛥𝑡𝑒 ≤ 𝛥𝑡𝑖+1 and 𝑖 indicates the subdomain of 
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that element); (iv) associate a time-step value (i.e., 
associate a subdomain) to each degree of freedom of the 
model considering the lowest time-step value of its 
surrounding elements. 

Once the subdomains of the model are stablished, 
displacement and velocity values along the boundaries of 
these subdomains may need to be interpolated. In this 
work, the following expressions are adopted for these 
interpolations: 

𝐔(t) =
1

2𝛥𝑡
(𝐔̇n+1 − 𝐔̇n)𝑡2 + 𝐔̇n𝑡 + 𝐔n (7a) 

𝐔̇(t) =
1

𝛥𝑡
(𝐔̇n+1 − 𝐔̇n)𝑡 + 𝐔̇n (7b) 

where 𝑡 is the current increment of time (0 ≤ 𝑡 ≤ 𝛥𝑡) for the 
focused subdomain and ∆𝑡 is the time-step value of the 
degree of freedom being interpolated, which is related to 
another subdomain. 

Numerical applications 

In this section, two numerical applications are considered, 
briefly illustrating the performance and potentialities of the 
discussed techniques. In the first example, the effect of an 
impulsive load over an infinite domain is studied, whereas, 
in the second application, a geophysical model is analyzed. 
The first example is considered here since an analytical 
solution for this model is available [17], allowing better 
comparing the results provided by the adopted time-
domain solution procedures.   

Application 1 

In this first example, an infinite elastodynamic model is 
analyzed, which is subjected to an impulsive load applied 
in the 𝑥 direction. Five circular FEM meshes, centered at 
the applied load point, are employed, taking into account 
different refinement levels. The number of elements in 
each adopted mesh are: (i) mesh 1 – 25600 elements; (ii) 
mesh 2 – 57600 elements; (iii) mesh 3 – 129600 elements; 
(ix) mesh 4 – 230400 elements; and (v) mesh 5 – 409600 
elements. 

In Fig.1, time-history results for the horizontal 
displacements at a point located 1.01 m horizontally away 
from the applied load are depicted, taking into account 
several time-marching procedures and the model’s 
analytical response. These results are presented for mesh 
2, which is also depicted in the figure (its right half is shown 
in Fig.1). The convergence curves for these procedures 
are indicated in the figure as well, depicting the errors of 
these approaches as mesh refinement is applied. As one 
can observe, the discussed time-marching procedures 
provide much more accurate results than standard 
techniques, and the effectiveness of these novel 
approaches are improved once subcycling is applied. In 
fact, as one can notice, the discussed adaptive techniques 
allow properly dissipating spurious numerical oscillations, 
providing much better responses than standard dissipative 
(e.g., the EG-α [8]) or non-dissipative (e.g., the CDM) 
approaches. 

In Tab.1, the performance of each adopted technique is 
described, taking into account each considered spatial 
discretization. As one can observe, the α-adap/sub 

methodology provides the most accurate results, whereas 
the β-adap/sub approach provides the most efficient 
analyses (an Intel Core i7 -9750H 2.60GHz processor is 
considered for the analyses, with multiplications by the 
element stiffness matrices parallelized with OpenMP using 
8 threads). 
 

 

Figure 1 – Time history results for mesh 2 and convergence 
curves for the discussed time-marching procedures. 

 

Table 1 – Performance of the methods for Application 1 

 

Mesh 

 

Method 
𝛥𝑡  

(10−2𝑠) 

Error 

(10−1) 

CPU 

Time (s) 

 

 

 

1 

CDM 0.12783 5.64 35.270 

EG-α 0.11520 5.28 44.440 

α-adap 0.12783 3.16 34.850 

β-adap 0.26306 4.09 18.540 

α-adap/sub 0.51132* 2.29 9.770 

β-adap/sub 1.05225* 3.49 4.880 

 

 

 

2 

CDM 0.72227 5.31 143.720 

EG-α 0.65096 4.87 164.220 

α-adap 0.72227 3.04 141.210 

β-adap 1.44455 3.87 66.520 

α-adap/sub 2.88234* 2.18 36.070 

β-adap/sub 5.75470* 3.38 18.740 

 

 

 

3 

CDM 0.72058 5.24 207.770 

EG-α 0.64944 4.87 217.800 

α-adap 0.72058 2.81 206.690 

β-adap 1.44117 3.62 91.500 

α-adap/sub 2.88234* 2.04 59.310 

β-adap/sub 5.76470* 3.14 27.210 

 

 

 

4 

CDM 0.56371 5.13 225.520 

EG-α 0.50806 4.32 243.220 

α-adap 0.56371 2.72 224.090 

β-adap 1.12743 3.46 118.760 

α-adap/sub 2.25486* 1.96 70.610 

β-adap/sub 4.50973* 3.04 44.300 

 

 

 

5 

CDM 0.31077 5.01 791.970 

EG-α 0.28009 4.09 860.460 

α-adap 0.31077 2.46 790.030 

β-adap 0.62155 3.23 445.000 

α-adap/sub 1.24310* 1.84 256.310 

β-adap/sub 2.48621* 2.91 156.120 

*Maximal 𝛥𝑡 in the multiple time-steps analysis 

 

Application 2 

In this second example, the Elastic 2DEW model [18] is 
analyzed. A sketch of this highly heterogeneous 35 km x 
15 km model is presented in Fig.2. A pulse source is 
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applied at the upper surface of the problem, as a vertical 
load located at 𝑥 =  17440𝑚, and a FEM mesh with 
717139 linear triangular elements is adopted for its spatial 
discretization. 
 

 

Figure 2: Elastic 2DEW geological model 

 

 
(a) 

 
(b) 

Figure 3 – Time-step values: (a) per element (intermediate 

step in the subdivision algorithm); (b) per subdomain for 
subcycling (final step in the subdivision algorithm). 

 

 
(a) 

 
(b) 

Figure 4 – Active values of the numerical damping parameters 

per element: (a) α-adap/sub (𝛼𝑒
𝑎𝑐𝑡); (b) β-adap/sub (𝛽𝑒

𝑎𝑐𝑡). 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 – Computed results along the discretized domain (t = 

20 s): (a) CDM; (b) EG-α; (c) α-adap/sub; (d) β-adap/sub. 

 
Table 2 – Performance of the methods for Application 2 

Method 𝛥𝑡 (10−2𝑠) CPU Time (s) 

CDM 0.22069 748.610 

EG-α 0.19834 830.460 

α-adap/sub 1.76552* 305.970 

β-adap/sub 3.53401* 204.230 

*Maximal 𝛥𝑡 in the multiple time-steps analysis 
 

In this case, the computed time-step value for each 
element of the model is depicted in Fig.3a, whereas the 
obtained subdomain division of time-steps for sub-cycling 
is depicted in Fig.3b. For this configuration, the active 
parameter values for α and β (eqs.(3) and (6), respectively) 
are depicted in Figs.4a and 4b, respectively. In Fig.5, the 
obtained results for the modulus of the computed 
displacements along the discretized domain, at t = 20 s, is 
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depicted, considering the CDM, the EG-α, the α-adap/sub 
and the β-adap/sub. In Tab.2 the performance of these 
techniques are provided.  

For this geophysical model, as Fig.5 illustrates, the new 
methodologies provide similar results to those of standard 
techniques, although, once again, less spurious 
oscillations can be perceived in the responses provided by 
these novel formulations. In addition, as Tab.2 indicates, 
the efficiencies of the novel procedures are much greater 
than those of standard approaches, illustrating once again 
the superior performance of these techniques. 

Conclusions 

This paper describes two explicit fully-adaptive time-
marching formulations for elastodynamic analyses. In 
these approaches, both time-step and time-integrator 
values adapt to the properties of the discretized models, 
allowing to provide more efficient and accurate solution 
methodologies. In the applications that have been 
presented in the previous section, the α-adap/sub 
technique provides the best accuracy among the 
techniques that are discussed in this work, and the β-
adap/sub method provides the lowest computational effort 
for solution. In fact, as the described examples illustrate, 
the proposed formulations are very robust and effective to 
analyze an ample range of complex wave propagation 
models, describing very attractive methodologies for direct 
modelling in geophysical applications. 

Acknowledgments 

The financial support by CNPq (Conselho Nacional de 
Desenvolvimento Científico e Tecnológico), CAPES 
(Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior), and PETROBRAS (CENPES – 21066) is greatly 
acknowledged. 

References 

[1] Soares Jr, D. (2020). A novel time-marching formulation 
for wave propagation analysis: the adaptive hybrid explicit 
method. Computer Methods in Applied Mechanics and 
Engineering, 366, 113095. 

[2] Soares Jr, D. (2021). A multi-level explicit time-
marching procedure for structural dynamics and wave 
propagation models. Computer Methods in Applied 
Mechanics and Engineering, 375, 113647. 

[3] Zhang, H. M., & Xing, Y. F. (2019). Two novel explicit 
time integration methods based on displacement-velocity 
relations for structural dynamics. Computers & 
Structures, 221, 127-141. 

[4] Noh, G., & Bathe, K. J. (2013). An explicit time 
integration scheme for the analysis of wave 
propagations. Computers & structures, 129, 178-193. 

[5] Kim, W. (2019). An accurate two‐stage explicit time 
integration scheme for structural dynamics and various 
dynamic problems. International Journal for Numerical 
Methods in Engineering, 120(1), 1-28.  

[6] Soares Jr, D. (2020). Efficient high-order accurate 
explicit time-marching procedures for dynamic 
analyses. Engineering with Computers, 1-15. 

[7] Soares Jr, D. (2019). An adaptive semi-explicit / explicit 
time marching technique for nonlinear 
dynamics. Computer Methods in Applied Mechanics and 
Engineering, 354, 637-662. 

[8] Hulbert, G. M., & Chung, J. (1996). Explicit time 
integration algorithms for structural dynamics with optimal 
numerical dissipation. Computer Methods in Applied 
Mechanics and Engineering, 137(2), 175-188. 

[9] Soares Jr, D. (2019). A model/solution‐adaptive explicit‐
implicit time‐marching technique for wave propagation 
analysis. International Journal for Numerical Methods in 
Engineering, 119(7), 590-617. 

[10] Hilber, H. M., Hughes, T. J., & Taylor, R. L. (1977). 
Improved numerical dissipation for time integration 
algorithms in structural dynamics. Earthquake Engineering 
& Structural Dynamics, 5(3), 283-292. 

[11] Wood, W. L., Bossak, M., & Zienkiewicz, O. C. (1980). 
An alpha modification of Newmark's method. International 
journal for numerical methods in engineering, 15(10), 
1562-1566. 

[12] Newmark, N. M. (1959). A method of computation for 
structural dynamics. Journal of the engineering mechanics 
division, 85(3), 67-94. 

[13] Soares Jr, D. (2015). A simple and effective new family 
of time marching procedures for dynamics. Computer 
Methods in Applied Mechanics and Engineering, 283, 
1138-1166. 

[14] Bathe, K. J., & Baig, M. M. I. (2005). On a composite 
implicit time integration procedure for nonlinear 
dynamics. Computers & Structures, 83(31-32), 2513-
2524. 

[15] Chung, J., & Hulbert, G. M. (1993). A time integration 
algorithm for structural dynamics with improved numerical 
dissipation: the generalized-α method. Journal of Applied 
Mechanics, 60(2): 371-375. 

[16] Tamma, K. K., Zhou, X., & Sha, D. (2000). The time 
dimension: a theory towards the evolution, classification, 
characterization and design of computational algorithms 
for transient / dynamic applications. Archives of 
Computational Methods in Engineering, 7(2), 67-290. 

[17]  Mansur, W. J. (1983). A time-stepping technique to 
solve wave propagation problems using the boundary 
element method (PhD thesis, University of Southampton). 

[18]  Fehler, M. (2012). Seam update: Seam phase i rpsea 
update: Status of simulations. The Leading Edge, 31(12), 
1424-1426. 


