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Abstract

Through numerical modeling of the theory of
poroelasticity, it is possible to compute the seismic
and sonic responses of reservoirs saturated by oil
and gas and investigate their main characteristics.
This work presents numerical simulations of seismic
wave propagations in a porous media fully saturated
by a viscous fluid. The methodology is based on
Ursin’s formalism, which derives explicit formulas to
the corresponding mathematical problem.

In addition, we performed an analysis of the influence
of some important physical parameters such as
porosity, permeability, and viscosity.

Introduction

Knowledge of the phenomena associated with the
propagation of seismic waves in porous media is
fundamental in studying hydrocarbon reservoirs. Modern
analysis of these phenomena is based on the theory of
poroelasticity developed by Maurice Biot; see (Biot, 1956a,
b; Biot, 1962a, b). One of the most important results of this
theory is recognizing a second compression wave, called
the slow P-wave or slow Biot wave.

Many authors have implemented Biot’s theory and
compared their results with experimental data; see, for
instance, Wyllie et al. (1956), Dutta and Ode (1983),
Carcione et al. (2010), and Masson and Pride (2010).

In 1983, Björn Ursin proposed a successful version of
the matrix method, which made it possible to obtain
analytical expressions for analyzing the propagation
of electromagnetic and elastic waves in a three-
dimensional space consisting of homogeneous layered
layers. Moreover, Ursin’s approach allows this method to
be applied to systems differential equations, provided that
they could be reduced to the so-called Ursin’s form; see
Ursin (1983) for details.

In this article, we apply the Ursin’s formalism to
the poroelastic case, when piecewise constant depth
functions characterize the physical parameters of the
earth’s subsurface. Thus, it was possible to solve the
problem analytically using the method proposed by Ursin.
Moreover, the obtained analytical expressions made it
possible to create an efficient mathematical algorithm and
fast computer code.

In addition, we carried out a comparative analysis
of the influence of some petrophysical parameters,
such as porosity, permeability, and viscosity, on the
processes of dispersion and attenuation of elastic waves
in elastic/porous media. The numerical experiments were
carried out both in the reservoir (seismic frequencies) and
laboratory (sonic frequencies) scales.

Method

Statement of the problem

Consider wave propagation in a porous half-space R+ =
∪n

k=0Rk composed by stratified homogeneous and isotropic
layers Rk =

{
x = (x,y,z) ∈ R3 : zk < z < zk+1

}
, where 0 =

z0 < z1 < · · · < zn+1 = ∞. All material parameters are
represented by piece-wise constant functions depended
only on the depth coordinate z, with discontinuities at
the internal layer boundaries z = zk, k = 1,2, . . . ,n. It is
assumed that the wavelength is large in comparison with
the dimensions of the macroscopic elementary volume, the
displacements both for the fluid and solid phases are small,
the liquid phase is continuous, the matrix is elastic and
isotropic, and the thermomechanical coupling is absence
(Bourbié et al., 1987).

At each point (x, t) ∈R+×R+, R+ = {t ∈R : t > 0}, the Biot
equations of poroelasticity (low-frequency range) are

ρ∂
2
t u+ρ f ∂

2
t w = ∇ · τ + f,

ρ f ∂
2
t u+ρw∂

2
t w+

η

κ
∂tw =−∇p+g

(1)

with the following constitutive relations

τ = (λ∇ ·u+ c∇ ·w)I+µ

(
∇u+∇uT

)
,

p =−c∇ ·u−m∇ ·w.
(2)

Vectors f = ( f1, f2, f3)
T and g = (g1,g2,g3)

T represent the
external forces on the porous material and on the pore
fluid, respectively. The absolute displacement of the solid
phase u= (u1,u2,u3)

T , the relative displacement of the fluid
phase w = (w1,w2,w3)

T , the elastic stress tensor τ and
the acoustic pressure p are unknown quantities; I is the
3×3 identity matrix and (·)T means the transposition of the
corresponding quantity.

The material parameters are as follows: λ and µ, the Lamé
coefficients, c and m, the Biot moduli, where c = αm (α is
the Biot coefficient), ρ, the bulk density, ρ f , the density of
the pore fluid, ρw, the effective density, κ, the permeability
and η , the pore fluid viscosity. The bulk density ρ is related
to the fluid density ρ f and to the density of the solid material
ρs through ρ = (1−φ)ρs +φρ f , and the effective density is
defined as ρw = aρ f /φ , where a and φ are the tortuosity
and porosity of the medium, respectively. According to
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Berryman (1980), the tortuosity for spherical solid grains
is a = 1−0.5(1−1/φ).

At the internal layer boundaries, the functions u, w, p, τ13,
τ23, τ33 are continuous, i.e.,

z = zk : [u] = [w] = 0, [p] = [τ13] = [τ23] = [τ33] = 0, (3)

where [·] means the jump of the corresponding function
across the internal layer boundary z = zk; see Carcione
(2007). At the free surface z = 0, we have the boundary
conditions

z = 0 : p = τ13 = τ23 = τ33 = 0. (4)

Finally, we assume the following initial data

t = 0 : u = w = ∂tu = ∂tw = 0. (5)

The system (1)–(5) describes the propagation of elastic
waves in the porous half-space R+ composed by stratified
homogeneous layers Rk, k = 1,2, . . . ,n.

Dispersion and Attenuation

Elastic waves propagating in a saturated porous medium
induce a fluid flow capable of causing dispersion and
attenuation through dissipative energy processes. The
dispersion and attenuation analysis of this work is based
on the formulas obtained in Sharma (2008) and Azeredo
and Priimenko (2021).

Analytical Solution

The initial boundary value problem (1)–(5) is solved
through the method based on Ursin’s formalism (Ursin,
1983); see (Azeredo and Priimenko, 2015, 2021) for more
details.

Results

Table 1 gives the physical properties of a homogeneous
saturated medium. These data were extracted from
Zhu and Mcmechan (1991) and represents the geological
model to study the mechanisms of dispersion and
attenuation of poroelastic waves.

Table 1: Physical properties of a homogeneous medium.

Property Symbol Value
Density of fluid ρ f 1000 kg/m3

Density of solid ρs 2400 kg/m3

Viscosity of fluid η 1.0 cP
Porosity φ 0.25
Permeability κ 400 mD
P-wave velocity on matrix vps 2700 m/s
P-wave velocity on fluid vp f 1500 m/s
S-wave velocity vs 1500 m/s

Figure 1 shows the dispersion and inverse of the quality
factor (Q−1) curves as a temporal frequency function,
where vps, vp f and vs are the phase velocities of the fast P-,
slow P- and S- waves, respectively. For the low-frequency
range, the velocities of S- and fast P- waves are frequency-
independent and similar to elastic and poroelastic models,

while the slow P-wave is very dispersive (frequency-
dependent). At high frequencies, when inertial effects
prevail, the dispersion of the slow wave decreases and
we can better notice its propagation. The vertical lines
represent the critical frequencies fc (Masson and Pride,
2010).

Figure 1: Dispersion and attenuation curves of poroelastic
waves.

Figures 2, 3 and 4 show the influence of porosity,
permeability and viscosity, respectively, on the propagation
of slow wave in a poroelastic medium. The other
parameters remain the same as in Table 1. Observe that
the phase velocity of the slow wave is not very affected
by the porosity in the low-frequency range, whereas, at
high frequencies, the porosity influences considerably in
the propagation of this wave. Furthermore, an increase in
permeability (or decrease in viscosity) results in increased
fluid mobility. It is noticed in Figure 3 that as the
permeability of the medium increases, the attenuation peak
shifts to the high frequencies.

To simulate the elastic wave propagation in a saturated
porous medium, we consider a vertical seismic source,
represented by the Ricker wavelet pulse, which have the
form of the second derivative of the Gaussian function
(Ricker, 1953). The numerical experiments occur at
the reservoir (seismic frequencies) and laboratory scales
(sonic frequencies).

Propagation in a homogeneous medium

Consider a source positioned on the free surface and
a receiver at (r,z) coordinates, where r and z are the
horizontal and vertical distances between source and
receiver (see Fig. 5). For reservoir scale, the dominant
frequency of the source is 15Hz, z = 1000m and r =
590m. While for laboratory scale, the dominant frequency
is 1.5MHz, z = 0.01m, and r = 0.0059m.
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(a) (b)

Figure 2: Dispersion and attenuation of slow wave with
variation of porosity.

(a) (b)

Figure 3: Dispersion and attenuation of slow wave with
variation of permeability.

(a) (b)

Figure 4: Dispersion and attenuation of slow wave with
variation of viscosity.

We use the following notation: PD1 direct fast P-wave, SD
direct shear wave, PD2 direct slow P-wave, PPR reflected
fast P-wave, PSR converted S reflected wave, SPR converted
P reflected wave, and SSR reflected S-wave.

Figure 6 shows the effect of porosity in the vertical
component of fluid relative velocity at the reservoir scale.
Observe that, as the porosity increases in the simulations,
the amplitude and velocity of the slow P-wave increase too.
At low porosity values (φ ≤ 0.10), the solid and fluid parts
are moving in-phase and the slow wave, which is related
to the relative out-of-phase movement, has an extremely
small amplitude.

Figure 5: Physical model used in numerical experiments
for homogeneous case.

(a) (b) (c)

Figure 6: Vertical component of fluid relative velocity with
variation of porosity (seismic frequency)

Figures 7 and 8 show the vertical component of the
fluid phase relative velocity in low and high frequencies,
respectively, considering three values of permeability. The
viscosity of the fluid is fixed at 10−9 cP because the slow
P-wave is visible only at small viscosity values (Zhu and
Mcmechan, 1991). As the permeability values are reduced,
the amplitude of the slow P-wave also decreases. It is
noted that, at the sonic frequency, the slow P-wave is
observable at lower permeability values than in the case
of seismic frequency.

(a) (b) (c)

Figure 7: Vertical component of fluid relative velocity with
variation of permeability (seismic frequency)

The effect of viscosity on the wave propagation is shown
in Figure 9 (seismic frequencies) and Figure 10 (sonic
frequencies), where the notations for direct waves were
omitted. Note, in Figure 9, that the slow P-wave is visible
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(a) (b) (c)

Figure 8: Vertical component of fluid relative velocity with
variation of permeability (sonic frequency)

for viscosities of an order of magnitude less than or equal
to about 10−5 cP. With the gas viscosity of about 10−2 cP,
the amplitude of the slow wave was not high enough to
be observed under the conditions presented. At the sonic
frequencies (Fig. 10), the slow P-wave is observable at
higher viscosity values than at the seismic frequencies.

(a) (b) (c)

Figure 9: Vertical component of fluid relative velocity with
variation of viscosity (seismic frequency).

(a) (b) (c)

Figure 10: Vertical component of fluid relative velocity with
variation of viscosity (sonic frequency).

Propagation in a heterogeneous medium

As an example, we consider a poroelastic heterogeneous
medium modeled by two (Fig. 11a) and three (Fig. 11b)
homogeneous horizontal layers whit source on the free

surface. For the two layers model (Fig. 11a), the receiver
is on the free surface, while for the three layers model, the
receiver is at (r,z) coordinates. Moreover, z = z1 and z = z2
are discontinuity surfaces. The physical properties of each
layer used in the numerical simulations are listed in Table 2
(Zhu and Mcmechan, 1991).

(a) (b)

Figure 11: Physical models of two layers a) and three layers
b).

Figures 12 and 13 show traces of the vertical velocity of
solid and vertical relative velocity of fluid considering the
two layers model (Fig. 11a). We assumed that the first
layer in Figure 12 is a water-saturated sandstone while the
first layer in Figure 13 is a gas-saturated sandstone (top-
down direction); for both, the second layer represents a
water-saturated shale.

The dominant frequency of the source is 45Hz, in reservoir
scale, and 45MHz, in laboratorial scale. The horizontal
distances between source and receiver are r = 150m and
r = 0.15× 10−3 m, the first for low frequencies and the last
for hight frequencies.

(a) (b)

Figure 12: Vertical components of velocities considering
elastic and poroelastic modeling. Water saturated
sandstone in the upper layer. Graphics in low a) and high
b) frequencies.

Using the matrix velocity (elastic modeling) in high
frequencies as a reference, observe that, for the water-
saturated medium (Fig. 12b), the relative amplitude of
matrix velocity is lower than for the gas-saturated medium
(Fig. 13b), as well as the relative amplitude of the
fluid relative velocity. This suggests that, at the sonic
frequency, in the case of water saturation, a larger part
of the poroelastic wave energy propagates in the fluid
part and the relative movement between solid and fluid
phases (responsible for the attenuation mechanism of
Biot’s theory) is less than in the case of gas saturation.

The discontinuities of the three layers stratified medium
(Fig. 11b) are at z1 = 1000m and z2 = 1200m. The
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Table 2: Physical properties of a heterogeneous medium.

Property Symbol Unity Shale/Water Sandstone/Gas Sandstone/Water
Density of fluid ρ f kg/m3 1000 140 1000
Density of solid ρs kg/m3 2413 2630 2630
Viscosity of fluid η cP 1.0 2.2×10−2 1.0
Porosity φ – 0.16 0.25 0.25
Permeability κ mD 103 103 103

Velocity of P-wave on solid matrix vps m/s 4790 5450 5450
Velocity of P-wave on fluid vp f m/s 1500 630 1500
Velocity of S-wave vs m/s 2520 3250 3250

(a) (b)

Figure 13: Vertical components of velocities considering
elastic and poroelastic modeling. Gas saturated sandstone
in the upper layer. Graphics in low a) and high b)
frequencies.

source dominant frequency is 25Hz, and a vertical and
horizontal source-receiver distances of z = 400m and r =
180m, respectively. The first and third layers simulate
water-saturated shale and the second layer simulates a
gas-saturated sandstone, according to Table 2. Figure 14
shows the trace of the third component of the solid velocity
(poroelastic modeling) in low frequencies. The amplitudes
of reflected waves are very small when compared to the
amplitudes of direct waves. Therefore, it was chosen to
represent in this figure only the reflected waves.

Figure 14: Vertical component of matrix velocity
considering poroelastic modeling in low frequencies.

Discussion and Conclusion

In this paper we present some simulation results of
elastic wave propagation in heterogeneous porous media
approximated by homogeneous and isotropic layers.
These results confirm the effectiveness of the matrix
method based on the Ursin’s formalism.

It was observed that, in the low-frequency range, the slow
wave is much more dispersive than the other waves. The
velocity of slow wave is affected by porosity and the ratio
between viscosity and permeability represents the main
influence on the attenuation of this wave.

Simulations for heterogeneous media were performed
for poroelastic and equivalent elastic models and were
compared to the seismic and sonic frequencies to illustrate
the effect of Biot’s poroelasticity. This effect was not
observed in the simulations at the seismic frequencies,
however, it appears significantly at the sonic frequencies.
This suggests that this theory can provide valuable results
if applied to the inversion of sonic profiles.
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