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Abstract

A good resolution of the subsurface image helps
to reduce uncertainties, which will guide a good
interpretation of the reservoir rocks, spotting possibly
an oil & gas accumulation. In this context Least-
Squares Reverse Time Migration ( LSRTM ) plays
an important role in attenuating migration artifacts,
helping to focus the reflectors and improve spatial
resolution. In this work it has been used the LSRTM
acoustic case using a state-of-art finite-difference (FD)
code-generation, Devito, which allows to solve the
wave equation, using symbolic expressions. The
LSRTM using Devito has been performed in two 2D
models, which show its particularities and difficulties.
In one of the examples, a synthetic velocity model from
the Búzios field was used to validate the LSRTM. Also,
some piece of codes has been provided to show the
way Devito handles with the wave equation and how
easily it is coded.

Introduction

Reverse time migration (RTM) is a seismic imaging method
to map the subsurface reflectivity using recorded seismic
waveforms (Baysal et al. (1983)). Since the marine
acquisition is made in a sparse grid, artifacts come
out, misplacing the reflectors and leading to an incorrect
interpretation of the reservoir rocks.

The first author to use the LSM method was Nemeth et al.
(1999), over the Kirchhoff migration in order to overcome
problems like truncated recording aperture, coarse source
and/or receiver sampling.

In his famous paper Dai and Schuster (2013) implemented
LSRTM, reducing acquisition footprint, RTM artifacts and
improving the image resolution. LSRTM implementation
uses a linearized wave equation using the Born
approximation (p ≈ p0), where the p0 is the background
wavefield. Then the reflectivity model is updated iteratively
combining a step-length and a search direction depending
on the method ( gradient, conjugate gradient, L-BFGS).

In this work to solve the acoustic wave equation we
used a state-of-art finite difference solver called Devito,
which allows the user implement differential equations, in
a symbolic way the same manner is written analytically.
Devito, based on the equations, generates a c-optimized
code making it way easier to implement than the other

conventional platforms.

In this scenario two 2D models have been used to validate
the LSRTM, using the Born approximation for forward and
adjoint modelling. The steepest descent method was
chosen to update the RTM image with an appropriate step-
length proposed by (Barzilai and Borwein (1988)). Also will
be shown the fashion way Devito implements the acoustic
wave equation will be discussed here how is generated the
optimized c-code.

Theory

The LSRTM method attempts to improve the subsurface
image resolution iteratively. Since it is a linear inversion
scheme, it should be made a linearized acoustic wave
equation. It is simple done by setting a relation on the
velocity model as c= c0+δc (de Oliveira et al. (2016))which
produces on the wavefield the result of p = p0 + δ p. In
this work the approximation has been done on the squared
slowness m = 1

v2 .

The acoustic wave equation using the squared slowness
considering a density constant can be written as:

m0(x)
∂ 2 p0(x, t)

∂ t2 −∇
2 p0(x, t) = s(x, t), (1)

where s is the source, m is the squared slowness, x is the
vector position and p0 is the background wavefield.

A perturbation in the squared slowness of m = m0 + δm
produces a perturbation in the wavefield as p = p0 + δ p
that obeys:

m(x)
∂ 2 p(x, t)

∂ t2 −∇
2 p(x, t) = s(x, t), (2)

using the perturbation of the squared slowness and the
pertubartion on the wavefield into (2):

(m0(x)+δm(x))
∂ 2(p0(x, t)+δ p(x, t))

∂ t2 −∇
2(p0(x, t)+δ p(x, t))= s(x, t).

(3)

Equation (3) can be divided into two set of equations:


m0

∂ 2 p0(x, t)
∂ t2 −∇2 p0(x, t) = s(x, t),

m0
∂ 2δ p(x, t)

∂ t2 −∇2δ p(x, t) =−δm
∂ 2(p0(x, t)+δ p(x, t))

∂ t2
(4)

Considering the Born’s approximation ( p ≈ p0 ) on the
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equation (4)
m0

∂ 2 p0(x, t)
∂ t2 −∇2 p0(x, t) = s(x, t),

m0
∂ 2δ p(x, t)

∂ t2 −∇2δ p(x, t) =−δm
∂ 2 p0(x, t)

∂ t2 .

(5)

where p0 is the wavefield from a smoothed squared
slowness m0, also known as background wavefield and
δ p is known as scattered wavefield. Equation (5) is for
Born forward modelling, the adjoint modelling equations is
defined as:

m0(x)
∂ 2q(x, t)

∂ t2 −∇
2q(x, t) = d, (6)

where d is the recorded data. Solving equation (6) and (5)
the image can be constructed as:

I = ∑
shots

∑
t

∂ 2 p0(x, t)
∂ t2 q(x, t). (7)

Since LSRTM is solved iteratively, is needed to define a
search direction and a step-length so that the migration
image is updated as:

Ik+1 = Ik−αkgk. (8)

where gk is the gradient and αk is the step-length. The
gradient computation is simply taking equation (5) and
instead of injecting the shot recorded d, injects the residue
dcalc−dobs ( backward in time ).

In this work the step-length for the first iteration was:

α =
0.05

max(g)
, (9)

and for the other iterations, was used the approach of
Barzilai and Borwein (1988):

α
BB1
k =

sT
k−1sk−1

sT
k−1yk−1

, (10)

where sk−1 = mk−mk−1 e yk−1 = gk−gk−1

A second option is:

α
BB2
k =

sT
k−1yk−1

yT
k−1yk−1

(11)

Afterwards an adaptive method based on Barzilai and
Borwein (1988) has been proposed by Zhou et al. (2006),
which is the step-length used in this work as follow,

αk =

{
αBB2

k , if 0 <
αBB2

k
αBB1

k
< 1

αBB1
k , else

(12)

A good way to know if the result is going in the right
direction is to evaluate the misfit function, if it decreases
along with the iteration it says that the problem is
converging to the minimum, providing the right solution. It
is defined as the L2norm of the observed data dobs and the
synthetic data dcalc.

E(m) =
1
2
||dobs−dcalc||2 (13)

Finite-Difference solver : Devito

Devito (Louboutin et al. (2018)) is an open-source Python
project based on domain-specific language and compiler
technology. Driven by the requirements of rapid HPC
applications development in exploration seismology, the
language and compiler have evolved significantly since
inception. Sophisticated boundary conditions, tensor
contractions, sparse operations and features such as
staggered grids and sub-domains are all supported;
operators of essentially arbitrary complexity can be
generated.

Devito utilises SymPy to allow the definition of operators
from high-level symbolic equations and generates
optimised and automatically tuned code specific to a given
target architecture.

Code generation using Devito

In this section some examples will be provided how easily
Devito can write complicated partial differential equations
(PDE), the corresponded c-code and how optimized it is
solved.

Let’s consider the wave equation in (1). On Devito it can be
written as:

1 from devito import TimeFunction
2

3 # Define the wavefield with the size of the
model and the time dimension

4 u = TimeFunction(name="u", grid=model.grid,
time_order=2, space_order=2)

5

6 # We can now write the PDE
7 pde = model.m * u.dt2 - u.laplace
8

9 # The PDE representation is as on paper
10 pde

Listing 1: Acoustic wave equation with constant density in
Devito

Figure 1: Symbolic acoustic wave equation in Devito.

Basically it generates the symbolic expression, now
the discretized way should be under equation & solve
command as follow:

1

2 # This discrete PDE can be solved in a time-
marching way updating u(t+dt) from the
previous time step

3 # Devito as a shortcut for u(t+dt) which is u.
forward. We can then rewrite the PDE as

4 # a time marching updating equation known as a
stencil using customized SymPy functions

5 from devito import Eq, solve
6

7 stencil = Eq(u.forward, solve(pde, u.forward))

Listing 2: Discretized acoustic wave equation with constant
density in Devito

To solve the wave equation, let’s define the source and
receiver using Devito.
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1

2 # Finally we define the source injection and
receiver read function to generate the
corresponding code

3 src_term = src.inject(field=u.forward, expr=src

* dt**2 / model.m)
4

5 # Create interpolation expression for receivers
6 rec_term = rec.interpolate(expr=u.forward)

Listing 3: Source and receiver definition.

1

2 from devito import Operator
3

4 op = Operator([stencil] + src_term + rec_term,
subs=model.spacing_map)

5

6 op(time=time_range.num-1, dt=model.critical_dt)

Listing 4: Finally we solve acoustic wave equation using
the operator command from Devito.

1 /* Begin section0 */
2 for (int x = x_m; x <= x_M; x += 1)
3 {
4 #pragma omp simd aligned(u,vp:64)
5 for (int y = y_m; y <= y_M; y += 1)
6 {
7 float r10 = dt*dt;
8 float r9 = vp[x + 2][y + 2]*vp[x + 2][y

+ 2];
9 u[t2][x + 2][y + 2] = r10*r9*(1.0e-2F*(u

[t0][x + 1][y + 2] +
10 +u[t0][x + 2][y + 1] + u[t0][x + 2][y +

3] + u[t0][x + 3][y + 2]) - 3.99999991e-2F*u
[t0][x + 2][y + 2] + (-(-2.0F*u[t0][x + 2][y
+ 2] +

11 +u[t1][x + 2][y + 2])/r10)/r9);
12 }
13 }
14 /* End section0 */
15

Listing 5: Optimized C code for wavefield computation.

NUMERICAL RESULTS

The LSRTM using Devito has been tested in two different
velocity models, each of them having its own acquisition
parameters.

Three layer velocity model

On this example, the LSRTM has been tested using a three
layer velocity model with a box in the middle as shown in
the figure (2), the true and corresponded velocity model.
The acquisition parameters are specified in the following
table.

LSRTM parameters for the three layer model
# of shots 21
# of receivers 101
Grid 10mx10m
fpeak 25Hz
Record length 1s
sample rate 1.7ms
Model extension 1kmx1km
LSRTM iterations 50

The initial migration has a low frequency backscaterring
noise and the reflectors are not well focused (Figure

Figure 2: True velocity model.

Figure 3: Smoothed velocity model to perform forward and
adjoint Born modelling.

6). After 50 iterations of the LSRTM (Figure 5) the
low-frequency noise has been very attenuated and the
reflectors are more well focused.

A profile has been taken from the middle of the data (
around 500 m in x ) to compare the LSRTM results against
the true reflectivity and the initial migration. LSRTM profile
fits better with the true reflectivity amplitude curve, clearly
seen on the two reflectors at depth of 300m and 600m.

The misfit function image shows the convergence of the
LSRTM implemented on Devito along the 50 iterations.
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Figure 4: True reflectivity model is written as dm = m−m0

Figure 5: LSRTM result after 50 iterations. The
backscattering noise has been severely attenuated and the
reflectors are very well focused, being closer to the true
reflectivity model.

Figure 6: Initial migration. Low frequency backscaterring
noise is predominant close to the first reflector and the
reflectors are not well focused.

Figure 7: Reflectivity comparison: Initial, LSRTM and true
reflectivity at x = 500m.
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Figure 8: Misfit function along the LSRTM iterations.

Búzios velocity model

This velocity field is based on the real velocity field from
the Búzios field, using well data information, sonic well
information and seismic horizons (Karsou et al. (2019)). To
make it even more close to the Búzios field velocity model
some elements have been added as a stratified salt and an
overhang.

Identifying a correctly top and base of salt is very important
to obtain a realistic migration and also to spot correctly an
oil gas accumulation. In this sense LSRTM will play an
important role to delineate those elements in the Búzios
velocity model. An overhang well imaged will help also to
identify correctly the top of salt, making the image closer to
the true earth’s reflectivity.

Figure 9: True velocity model created using real data set of
the Búzios dataset field.

The LSRTM over the Búzios (Figure 13) model showed
a very good improvement, removing the backscattering
noise, improving the overhang, helping to focus the top of
salt and the base of the salt.

Figure 10: Smooth velocity model.

Figure 11: True reflectivity for Búzios velocity model.

Figure 12: Initial migration of the Búzios velocity model. It
is clearly seen that the backscattering noise is very strong
and top of salt is totally blurred.

LSRTM parameters for the Búzios velocity model
# of shots 51
# of receivers 431
Grid 25mx25m
fpeak 15Hz
Record length 8s
sample rate 1ms
Model extension 10.7kmx7km
LSRTM iterations 100

Seventeenth International Congress of The Brazilian Geophysical Society



ACOUSTIC LEAST-SQUARES RTM USING DEVITO 6

Figure 13: LSRTM after 100 iterations. Top of salt,
overhang and base of salt has been improved after
backscattering noise attenuation. Also base of salt has
been more focused and top of salt as well.

Figure 14: Reflectivity comparison: Initial, LSRTM and true
reflectivity at x = 7Km.

Conclusions

The LSRTM has been implemented using a state-of-art
FD solver, Devito, where the wave equation can be easily
implemented in a symbolic way, using a few lines of code.

Two velocity models were used to validate the results. The
first one after the LSRTM the backscaterring noise present
on the two initial migrations has been removed and the
LSRTM helped to improve the focusing of the reflectors.
Another velocity model, based on the real Búzios velocity
model, has been used and the LSRTM helped to remove
the backscaterring noise, to focus the reflectors and match
the amplitude range. Also some key elements have been
improved as base of salt, overhang and the top of salt,
helping to delineate the salt and the pre-salt where the
reservoirs in Brazil basins are located.

Figure 15: Misfit function along with the LSRTM iterations.
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