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Abstract

The inverse scattering imaging condition (ISIC)
for reverse-time migration (RTM) is based on a
combination of temporal and spatial derivatives of
the up- and downgoing wavefields. In the high-
frequence regime, this image condition is exactly
the inverse of Born modeling, which justifies it
being called a true-amplitude imaging condition. By
means of partial integrations (or redistribution of
the frequency factors in the frequency domain), we
derive several alternative expressions for this imaging
condition. Interestingly, the temporal derivatives can
be completely replaced by spatial derivatives and
temporal integrations. One version of the ISIC makes
use of the Laplacian operator, in this way relating to
a common way of removing backscattering artifacts
in RTM. We demonstrate by numerical examples using
the Marmousi II model that the theoretical equivalence
of the equations leads to similar, but not identical,
images. Our numerical tests indicate that the ISIC
based on the spatial derivatives are the most economic
ones, and that the images obtained using the second-
time derivative of the source wavefield show a slightly
improved resolution over the other implementations.

Introduction

Reverse-time migration (RTM) is a seismic imaging method
based on the full (two-way) wave equation (Schultz and
Sherwood, 1980; McMechan, 1983; Baysal et al., 1983)
to propagated the involved wavefields into the subsurface.
In the same way as other wave-equation based migration
techniques, it makes use of an image condition, the
most basic form of which is a simple cross-correlation of
the forward-propagated source wavefield (ps(t,x;xs)) and
the backward-propagated receiver wavefield (pr(t,x;xr))
(Claerbout, 1971). Frequently, a Laplacian filter is applied
to the migrated image to attenuate backscattering noise,
and an illumination factor (P(x;xs)) is used to compensate
for the loss of amplitude with increasing depth (Biondi,
2006), i.e.,

Ic(x) =
1

P(x;xs)
∇

2
[∫

t
ps(t,x;xs)pr(t,x;xr)dt

]
. (1)

With the objective of further improving the quality and
meaning of image amplitudes, Kiyashchenko et al. (2007)

and Op’t Root et al. (2012) derive the inverse scattering
imaging condition (ISIC) for reverse-time migration (RTM).
The latter authors demonstrated, using microlocal analysis,
that this image condition is an asymptotic inverse of Born
modeling. Therefore, ISIC provides image amplitudes that
are proportional to reflection coefficients.

According to Op’t Root et al. (2012), the ISIC is given in the
frequency domain by

Ir(x) =
1

2π
∑
s

∫
ω

dω
1

(−iω)PsPs

[
PsPr−

c2(x)
ω2 ∇Ps ·∇Pr

]
, (2)

where Ps = Ps(ω,x;xs) and Pr = Pr(ω,x;xs) are the Fourier
transforms of the (downgoing) source and (upgoing)
receiver wavefields for a source at xs, downward continued
to the imaging point x. Moreover, the bar over a symbol
denotes the complex conjugate operation. To satisfy
imaging condition 2, the reverse wavefield (Pr) in time
domain (pr) is backpropagated by

1
c2(x)

∂ 2 pr(x, t)
∂ t2 −∇

2 p2
r (x, t) = FBd(xr, t), (3)

where d(xr, t) is the recorded data, injected at the position
of the receivers and FB a boundary operator, defined as:

FB =−2iDt
1

c(x)

√
1− c2D−2

t D2
x, (4)

with
Dt =−i∂t , and Dx =−i∂x. (5)

Equation 2 is slightly different from the one of Op’t Root
et al. (2012). For simplicity, we have assumed that the
source wavelet is a (possibly band-limited) delta-function,
the effects of which are acceptable in the final migrated
image. Therefore, we have combined in equation 2
the Green’s function and source wavelet in the formula
of Op’t Root et al. (2012) into the source wavefield
Ps. Moreover, we have made the sum over all sources
explicit. Finally, the different sign of the factor (−iω) in the
denominator of the above equation results from our use of
a different definition of the Fourier transform pair, being

f (ω) =
∫

∞

−∞

dt f (t)eiωt , f (t) =
1

2π

∫
∞

−∞

dω f (ω)e−iωt . (6)

In this work, our objective is to find a time-domain version
of equation 2 that can be efficiently implemented, and
to study the image differences resuting from different
implementational forms. For this purpose, we use a
local high-frequency approximation to derive a number
of theoretically equivalent time-domain forms and test
their practical performance. In a similar way to Douma
et al. (2010), we show that the ISIC for RTM can
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be reformulated into a version containing the Laplacian
operator. Our theoretical analysis demonstrates that
the Laplacian filter should be applied before illumination
compensation. Moreover, we numerically evaluate the
derived time-domain versions of the ISIC by comparing
the resulting migrated images of synthetic data from the
Marmousi II model, simulated using Born modeling.

Implementational forms of ISIC

The advantage of the frequency-domain representation of
the ISIC in equation 2 is that the time derivatives are
represented by factors (−iω). Thus, it immediately allows
us to recognize that these factors can be rather freely
redistributed among the wavefield terms. Making use of
this freedom, our first manipulation is to put the ω2 factor
in the denominator of the spatial-derivatives term, where
it would represent a two-fold time integration, in evidence.
This results in

Ir(x) =
1

2π
∑
s

∫
ω

dω
1

(−iω)3PsPs

[
(−iω)Ps(−iω)Pr

+ c2(x)∇Ps ·∇Pr

]
, (7)

where we distributed the two (−iω) factors inside the
brackets symmetrically between the wavefield terms. This
is the most conventional form of applying the time
derivatives.

If we move one of the (−iω) factors in the denominator to
the receiver wavefield Pr, we can rewrite equation 7 as

Ir(x) =
1

2π
∑
s

∫
ω

dω
1

(−iω)2PsPs

[
(−iω)Ps(−iω)Qr

+ c2(x)∇Ps ·∇Qr
]
, (8)

where we have introduced the time-integrated receiver
wavefield, given in the frequency domain by

Qr = Qr(ω,x;xs) =
Pr(ω,x;xs)

(−iω)
, (9)

or in the time domain by

qr(t,x;xs) =
∫ t

0
pr(t ′,x;xs)dt ′ . (10)

Under the assumption that the absolute value of the
source wavefield is locally frequency independent,
which is consistent with the local high-frequency
approximation Ps(ω,x;xs) = As(x;xs)e−iωτs(x;xs), the
illumination-compensation factor in the denominator
can be taken out of the frequency integral (see also
Kiyashchenko et al., 2007; Schleicher et al., 2008). In this
way, equation 8 can be approximated by

Ir(x) =
1

2π
∑
s

1
P′(x;xs)

∫
ω

dω

[
(−iω)Ps(−iω)Qr

+ c2(x)∇Ps ·∇Qr

]
, (11)

or in the time domain,

Ir(x) = ∑
s

1
P′(x,xs)

∫
t
dt
[

ṗs(t,x;xs)q̇r(t,x;xs)

+c2(x)∇ps(t,x;xs) ·∇qr(t,x;xs)

]
, (12)

where the dot above a symbol denotes the time derivative.
The illumination compensation factor P′(x,xs) is given by
the autocorrelation of the time derivative of the source
wavefield. Equation 12 is the first implementational form of
ISIC discussed in this paper. In the same way, we will keep
using the local high-frequency approximation consistently
for all remaining versions of the ISIC.

Another way of representing the ISIC in the time domain is
to use the triple integral of the receiver’s wavefield, which
we denote by

Q(3)
r = Q(3)

r (ω,x;xs) =
Pr

(−iω)3 =−Qr

ω2 , (13)

or, in the time domain,

q(3)r (t,x;xs) =
∫ t

0
q(2)r (t ′,x;xs)dt ′ . (14)

With this notation, we can rewrite equation 8 as

Ir(x) =
1

2π
∑
s

1
P(x;xs)

∫
ω

dω

[
(−iω)Ps(−iω)Q(3)

r

+ c2(x)∇Ps ·∇Q(3)
r

]
, (15)

or in the time domain,

Ir(x) = ∑
s

1
P(x,xs)

∫
t
dt
[

ṗs(t,x;xs)q̇
(3)
r (t,x;xs)

+c2(x)∇ps(t,x;xs) ·∇q(3)r (t,x;xs)

]
. (16)

In this expression, the illumination factor P(x;xs) is given by
the autocorrelation of the source wavefield.

Another alternative form of the ISIC is obtained when using
the second time derivative of the source wavefield given by

rs = p̈s i.e., Rs =−ω
2Ps . (17)

Adequate distribution of the (−iω) factors in equation 8
leads to the expression

Ir(x) =
1

2π
∑
s

1
R(x;xs)

∫
ω

dω

[
(−iω)Rs(−iω)Qr

+ c2(x)∇Rs ·∇Qr

]
, (18)

or in the time domain,

Ir(x) = ∑
s

1
R(x,xs)

∫
t
dt
[

ṙs(t,x;xs)q̇r(t,x;xs)

+c2(x)∇rs(t,x;xs) ·∇qr(t,x;xs)

]
. (19)

In this version of the ISIC, the illumination compensation
factor R(x,xs) is given by the autocorrelation of the second
time derivative of the source wavefield.

Relationship with the Laplacian

It is not hard to conceive that the redistribution of the (−iω)
factors in equation 8 needs not be done symmetrically with
respect to the involved wavefields. Instead of applying
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one factor to the source wavefield and the second one
to the receiver wavefields, we can apply both factors to
only one of these wavefields, say, the source wavefield.
For convenience, we also put the squared velocity into
evidence to obtain

Ir(x) =
1

2π
∑
s

∫
ω

dω
c2(x)
PsPs

[
− ω2

c2(x)
PsQ

(3)
r +∇Ps ·∇Q(3)

r

]
.

(20)
Below, we show that there are different possible ways to
interpret this formula.

Second-order source-wavefield derivative

On the one hand, the factor ω2/c2 in equation 20 can be
interpreted as multiplying the source wavefield. Upon the
use of the corresponding Helmholtz equation,

∇
2Ps +

ω2

c2(x)
Ps = 0 , (21)

equation 20 becomes

Ir(x) =
1

2π
∑
s

∫
ω

dω
c2(x)
PsPs

[
∇

2PsQ
(3)
r +∇Ps ·∇Q(3)

r

]
=

1
2π

∑
s

c2(x)
P(x;xs)

∫
ω

dω ∇ ·
[
∇Ps Q(3)

r

]
, (22)

where the second equality is a result of applying the local
high-frequency approximation and recognizing the product
rule for the spatial derivatives.

Second-order receiver-wavefield derivative

On the other hand, we can also interpret the factor ω2/c2 in
equation 20 as multiplying the receiver wavefield. Using the
(third time integral of the) associated Helmholtz equation,

∇
2Q(3)

r +
ω2

c2(x)
Q(3)

r = 0 , (23)

we can rewrite equation 20 as

Ir(x) =
1

2π
∑
s

c2(x)
P(x;xs)

∫
ω

dω∇ ·
[
Ps∇Q(3)

r

]
. (24)

Laplacian filter

Moreover, since equations 22 and 24 represent
manipulations of the same theoretical expression 8,
we can also calculate the image Ir as the average of both
expressions, i.e.,

Ir(x) =
1

2π
∑
s

c2(x)
P(x;xs)

1
2

∫
ω

dω

(
∇ ·
[
∇Ps Q(3)

r

]
+∇ ·

[
Ps∇Q(3)

r

])
=

1
2π

∑
s

c2(x)
2P(x;xs)

∇
2
∫

ω

dω

[
Ps Q(3)

r

]
, (25)

where we again have made use of the product rule for the
gradient. Finally, in the time domain, this equation reads

Ir(x) = ∑
s

c2(x)
2P(x;xs)

∇
2
∫

t
dt
[

ps(t,x;xs)q
(3)
r (t,x;xs)

]
. (26)

We note that, except for a small modification, the ISIC
in this form is equivalent to applying the Laplacian to the

correlation of the source and receiver wavefields, which is
a common procedure in practice. The theoretical derivation
demonstrates that the Laplacian must be applied before
the illumination compensation. Moreover, there is a minor
amplitude modification, represented by the multiplication
with a factor of c2/2. Finally, to get the wavelet shape
correct, version 26 makes use of the third time integral of
the receiver wavefield.

Of course, the same manipulations can be applied to the
form 18 of the ISIC, resulting in

Ir(x) =
1

2π
∑
s

c2(x)
2R(x;xs)

∇
2
∫

ω

dω
[
Rs Qr

]
, (27)

or in the time domain,

Ir(x) = ∑
s

c2(x)
2R(x;xs)

∇
2
∫

t
dt [rs(t,x;xs)qr(t,x;xs)] . (28)

In this version, the wavelet shape is corrected by using
the second derivative of the source wavefield together
with the integrated receiver wavefield. The application of
the Laplacian before illumination compensation and the
amplitude correction by a factor c2/2 remain the same as
in equation 26.

Numerical Examples

To evaluate the performance of the above-discussed
versions of the ISIC, we have implemented and applied
them in a reverse-time migration of synthetic Born data
from the Marmousi II model. All migrations use the same
algorithm for the wavefields propagation in a smoothed
version of the Marmousi II model (Figure 1). In Figure 2,
we show the true reflectivity model (Figure 2a) and the RTM
images resulting from applying the different ISIC versions.
Figure 2b shows the RTM image using Claerbout’s original
crosscorrelation imaging condition with Laplacian filter and
illumination compensation. Correspondingly, Figures 2c,
2d, 2e, 2f, and 2g show the RTM images obtained using
the implementational forms of the ISIC in time domain
as discussed above, equations 12, 16, 19, 26, and 28,
respectively.

Figure 1: Smoothed velocity model used in all RTM
images.

Comparing the RTM image obtained using Claerbout’s
image condition (Figure 2b) with the true reflectivity model
convolved with the same source pulse used in the RTM
images (Figure 2a), we note that this imaging condition,

Seventeenth International Congress of the Brazilian Geophysical Society



IMPLENTATIONAL FORMS OF ISIC 4

Figure 2: RTM images. (a) True reflectivity model
convolved with source pulse; (b) RTM image using
Claerbout’s imaging condition with Laplacian filter and
amplitude compensation 1; (c-g) RTM images using the
respective implementational forms of ISIC: (c) equation 12,
(d) equation 16, (e) equation 19, (f) equation 26, and (g)
equation 28.

although detecting a large part of the model’s structures,
distorts the images’ amplitudes, so that they are no longer
proportional to the reflection coefficients of the true model.

In contrast, all RTM images obtained using the different
implementational forms of the ISIC present much better
amplitudes. At first look, the five images shown in
Figures 2c, 2d, 2e, 2f, and 2g look rather similar,
reflecting the theoretical equivalence between the applied
imaging conditions. Comparing them visually with the true
reflectivity model convolved with source pulse of Figure
2a, we note that the amplitudes generally provide a good
approximation of the true reflectivity.

For a closer inspection, we show in Figure 3 a detail of
the ISIC images and the reflectivity model (region delimited
by the blue rectangle in Figure 2). Again, the overall
impression of rather similar images persists, and all images
compare favorably with the reflectivity model (Figure 3a).
However, in the zoom, we can now recognize a few subtle
differences. Generally speaking, the images of Figures 3b,
3c, and 3e, which don’t use the second time-derivative of
the source wavefield (see equations 12, 16, and 19), are
identical and appear to present a slightly inferior resolution
to the other two images, Figures 3d and 3f, which were
obtained using the ISIC versions employing the second
time-derivative of the source wavefield (equations 26 and
28).

An evaluation of the achieved recovery of the reflection
coefficients can be better achieved by a trace-by-trace
comparison than by looking at the complete images. Figure
4 shows such a comparison of a single trace of the
true model reflectivity, taken at the horizontal position of
4500 m, to the corresponding traces of the RTM images. All
traces have been normalized to their maximum amplitudes.

We immediately note that the ISIC traces (Figures 4c, 4d,
4e, 4f, and 4g) present a similar amplitudes distribution,
doing a much better job of representing the true reflectivity
than the trace in Figure 4b, obtained using Claerbout’s
imaging condition with illumination compensation and
Laplacian filtering (equation 1). This difference is more
significant in the first layers of the image (indicated by blue
background color) where, unlike the true trace (Figure 4a),
the amplitudes of Claerbout’s imaging condition start with
higher values and detect the structure in about 1300 meters
with less amplitude (Figure 4b). Also, in the deepest part
of the traces (purple background), amplitudes of structures
below 3000 meters are very low. These effects are
corrected in all traces produced with the different versions
of the ISIC (Figures 4c, 4d, 4e, 4f, and 4g). We note that the
traces obtained using second time-derivative (Figures 4e
and 4g) present the best resolution and, thus, the highest
similarity to the reflectivity trace.

Computational cost

We tested all imaging conditions using the same routines
for the wavefield propagation, with a code parallelized
using GPUs with 38 threads per processor. We measured
the time considering only the heaviest stages of computing:
numerical evolution of the forward and backward wavefields
and application of the imaging condition. Table 1 shows
the computational cost for migration using each imaging
condition discussed in this paper. Note the the Laplacian
versions of ISIC (equations 26 and 28) have the same
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Figure 3: Detail of the reflectivity model and ISIC images (region delimited by the blue rectangle in
Figure 2). (a) True reflectivity model convolved with source pulse; (b-f) RTM images using the ISIC
implementational forms: (b) equation 12, (c) equation 16, (d) equation 19, (e) equation 26, and (f)
equation 28.

Figure 4: Trace of reflectivity and RTM images at 4500 meters. (a) True reflectivity model convolved
with source pulse; (b) RTM image using Claerbout’s imaging condition with Laplacian filter and
amplitude compensation, equation 1; (c-g) RTM images using the respective implementational forms
of ISIC: (c) equation 12, (d) equation 16, (e) equation 19, (f) equation 26, and (g) equation 28.
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computational cost as Claerbout’s imaging condition with
Laplacian filter and illumination compensation (equation 1),
but result in better image quality.

Table 1: Computational cost of each imaging condition
Equation time (min)

Claerbout’s IC-LI 1 43.0
12 51.0
16 50.5

ISIC 19 50.2
26 43.0
28 42.9

Implementational peculiarities of ISIC using the third
integral of the receiver’s wavefield

The third integral used in equations 16 and 26 causes an
imbalance of the low frequencies in the migrated image. To
avoid this problem, before injecting the third integral of the
data in the receiver’s position, it is necessary to apply a
filter to regulate the low frequencies present in the data. In
this work, we make use of a leaky integration (Claerbout,
2014), i.e,

y(t) =
∫

∞

0
x(t− τ)ρdτ, (29)

where ρ = e−ατ . Throughout integration, ρ is a constant
that can admit a value from 0 to 1. In our numeric
experiments, we choose ρ = 0.99. In the case of triple
integration, Equation 29 is recursively applied in the
seismic data three times.

Conclusions

In this paper, we have deduced and implemented a
number of theoretically equivalent versions of the true-
amplitude inverse-scattering imaging condition for RTM of
Kiyashchenko et al. (2007) and Op’t Root et al. (2012).
In a similar way to Douma et al. (2010), our theoretical
derivations have show a relationship between the true-
amplitude imaging condition for RTM and the Laplacian
operator. This operator is frequently used in seismic
imaging without a profound theoretical basis to remove
low-frequency backscattering artefacts from RTM images.
The derivations have demonstrated that the Laplacian filter
needs to be applied before the illumination compensation.

Through numerical tests using Born data from Marmousi II,
we have shown that the ISIC in all cases provides results
superior to a simple cross-correlation of the source and
receiver wavefields, even with the application of Laplacian
filter and illumination compensation. We have seen that the
ISIC implementational forms studied in this paper, though
being theoretically equivalent, produce numerically similar
but not identical results.

In our numerical experiments for ISIC, formulations based
on the Laplacian and with two cross-correlation terms that
consider the second time derivative of the source wavefield
show a slight improvement in resolution over the other
formulations. The conventional form of ISIC presents a
better result than simple cross-correlation but has a higher
computational cost. We also showed that the proposed
forms of ISIC based on the Laplacian provide very similar
results to the conventional form of ISIC, but at the same

cost as the imaging condition of Claerbout (1971) with
Laplacian filter and illumination compensation. Thus, we
conclude that the best form of the ISIC is the Laplacian
version using the second time-derivative of the source
wavefield.
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