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Abstract

Reverse-time migration (RTM) is the method commonly
employed in seismic processing to produce depth images.
However, it requires that the data to be migrated should
be free of multiple-scattering events as surface-multiples
and internal multiples. More recently, Marchenko imaging
has been used as an efficient procedure that can efficiently
remove these multiples events during the imaging process.
The multiples events that appear in the RTM images
as false events are completed eliminated during the
Marchenko-redatuming step and thus the images produced
by Green’s functions are free of these artifacts. In this
work, we discuss the solution of the coupled Marchenko
equations using a least-squares (LS) approach and its
implementation using the Julia programming language.
The inverted focusing functions are then employed to
obtain Green’s functions and after that, a cross-correlation
image condition is applied to generate a depth image. We
test our LS-Marchenko method implemented in Julia using
a simple geological model. Finally, the numerical results
of the Marchenko image and RTM image are compared,
validating the codes implemented in Julia.

INTRODUCTION

Seismic imaging is still a key step in seismic processing
and the generation of seismic images can be done using
different methods, such as Kirchhoff migration, reverse-
time migration (RTM), and more recently by Marchenko
imaging (Baysal et al., 1983; Hokstad, 2000; van der
Neut et al., 2015c; Wapenaar et al., 2014). Behind each
methodology, there is a largely complex development of an
algorithm to generate these images. Despite the existence
of all these methodologies, the search for better imaging
improvements continues today, and the understanding of
how these techniques are implemented is necessary.

Marchenko imaging recently has become noticed because
it can generate a high-quality image, despite its high
computational cost. The Marchenko algorithm is a robust
method that computes subsurface-to-surface Green’s
function, and its main advantage is that it can correctly
treat the internal multiple reflections (Broggini and Snieder,
2012). Recent studies show that it is possible to calculate
the Green’s function for a synthetic source located at any

subsurface position, which can be done by an iterative
substitution scheme (van der Neut et al., 2015a; Thorbecke
et al., 2017) or by a least-squares inversion algorithm
(van der Neut et al., 2015a; Dukalski and de Vos, 2018).

Some works/libraries already have implementations of
the Marchenko algorithm using high-level and low-
level language interpretations (Ravasi and Vasconcelos,
2020b,a; Thorbecke et al., 2017). Thorbecke et al. (2017)
present an overview of the Marchenko method using an
iterative substitution scheme, and how to implement it.
But there is no work showing how to do it for the least-
squares inversion scheme, because in some cases we
cannot expand equations into a Neumann series (Ravasi,
2017; Vargas et al., 2021). In this specific situation, e.g., in
free-surface case, it is not possible to retrieve the focusing
function by iterative substitution, therefore, an inversion
method is required, as well as understanding how to use
the least-square scheme in the Marchenko method.

Nowadays, there are several programming languages and
each one brings a different kind of advantage, e.g., better
performance or simple syntax. Here, we choose to use
the Julia programming language, which tries to unite both
advantages. Julia, despite being a young language, has
been efficient in both computation speed and easy code
implementation (Bezanson et al., 2012). Julia was released
in 2012 since then a lot of upgrades have been done. Also,
the Julia language implements a lot of high-level features
from interpreting languages. Due to this, the development
of software on Julia is potentially faster (Gevorkyan et al.,
2019).

This work provides a simple guide to applying the least-
square (LS) approach in the Marchenko method using
Julia programming language, but the logical programming
can be done in any other, high or low, level interpreting
languages. To show the efficiency of the method and the
algorithm, we use a synthetic model with constant velocity
and variable density to retrieve Green’s functions and build
the seismic image.

THEORY

Marchenko equations

We present a brief review of the Marchenko equations
presented in Ravasi (2017). From reciprocity theorems
of correlation and convolution types between two states
(de Hoop, 1995; Wapenaar and Grimberg, 1996; Slob
et al., 2014) and based on inverse scattering theory
(Broggini and Snieder, 2012), it is possible to relate
wavefields that focus the energy on a specific focal point
in the subsurface to Green’s function relative to this point
that is recognized as a virtual source. These wavefields
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are known as focusing functions and the relation to up- and
downgoing Green’s functions (g− and g+) at the selected
point in the subsurface can be written in the frequency
domain as (Wapenaar et al., 2014)

g−(xF , xR) =
∫

ΛR

R(xR, x′R) f+(x′R, xF )dx′R− f−(xR, xF ), (1)

−g+∗(xF , xR) =
∫

ΛR

R∗(xR, x′R) f−(x′R, xF )dx′R− f+(xR, xF ),

(2)
where ΛR represents the acquisition level, x′R is the
source position at the level ΛR and R is the reflection
response from x′R to the receiver at xR. f− and f+ are
the up- and downgoing focusing functions, respectively.
The superscript ∗ denotes the complex conjugate of the
wavefield (i.e., a time reversal in the time domain) and the
integrals in both equations correspond to multidimensional
space-frequency convolution and correlation, respectively.
Equations 1 and 2 are named as the coupled Marchenko
equations.

The coupled Marchenko equations can be discretized and
expressed in a more compact notation using the simplicity
of the matrix notation (van der Neut et al., 2015b)[

−g−

g+∗

]
=

(
I−
[

0 R

R∗ 0

])[
f−

f+

]
, (3)

where g± and f± are vectors in which the seismic
traces are concatenated in the time-space domain,
whereas R and R∗ can be seen as the multidimensional
space-time convolutional and correlational matrix operator,
respectively, containing the reflection response acquired.
Matrices I and 0 are the identity matrix and a matrix filled
with zeros.

Solving the Marchenko equations by LS inversion

The system of equations (equation 3) represents an
underdetermined system of two equations and four
unknowns (g+, g−, f+ and f−). To solve the system to get
the focusing functions, we resort to the causality properties
of the focusing solutions and Green’s functions: by noting
that the Green’s function contains a direct arrival followed
by a scattering coda, a window Θ is designed such that
all events after the traveltime td(xF , xR) of the direct wave
from the focal point xF to the receiver xR (including the
direct wave itself) and before −td(xF , xR) are zeroed (i.e.,
Θg+ = 0 and Θg− = 0). On the other hand, the application
of the separation operator on the focusing functions leads
to Θf+ = f+m and Θf− = f−, where we have assumed that
f+ is composed of a first arrival/direct wave f+d followed
by a scattering coda f+m in such a way that f+ = f+d + f+m
(Wapenaar et al., 2014).

Hence, applying the window matrix Θ to equation 3, it is
now possible to solve the coupled Marchenko equations
for the focussing functions by solving the following system(

I−
[

0 ΘR

ΘR∗ 0

])
︸ ︷︷ ︸

A

[
f−

f+m

]
︸ ︷︷ ︸

x

=

[
ΘRf+d

0

]
︸ ︷︷ ︸

y

. (4)

Now, we have that the system of equations given by
equation 4, represents a linear system Ax = y, which can

be solved by calculating the least-squares (LS) inverse
of the matrix A. Another way to solve equation 4 is
using the Neumann series to expand the inverse of the
matrix A , once this equation is a discretized Fredholm
integral equation of the second kind (Slob et al., 2014).
Solving equation 4 allows us to obtain f+ and f−, which
are substituted into equation 3 to compute Green’s function
components at the desired subsurface point and after
that, apply an imaging condition. To construct up-
and downgoing focusing functions and sub-sequently the
Green’s function, equation 4 is inverted using an iterative
damped LSQR gradient-based optimization scheme (Paige
and Saunders, 1982), which minimize a regularized `2

normal misfit function (e.g., minx ‖Ax− y‖2 + λ‖x‖2), and
for a consistent set of equations will converge to a solution
with a monotonically decreasing residual. The parameter λ

is a damping factor which was set to 10−2. In this method,
the elements of A are applied as operators, so it is not
necessary to build the referred matrix. The LS scheme is
not based on the Neumann expansion series and so it does
not require to satisfy a stability criterion.

On the imaging condition

For any migration algorithm, the construction of a seismic
image requires the application of an imaging condition.
In possession of the unidirectional components of the
Green’s function, retrieved by the LS scheme, the imaging
principle for the Marchenko imaging consists in applying
multidimensional deconvolution (MDD, Wapenaar et al.
(2008)). Since the application of this image condition is
very expensive, Behura et al. (2014) suggest applying the
conventional cross-correlation between these components
of Green’s functions. However, this imaging condition still
contains artifacts because the g+ component consists of
additional events apart from the first arrival. According
to van der Neut et al. (2018) and Matias et al. (2018),
these artifacts caused by the interaction of multiples in
g+ and primaries (plus multiples) in g−, can be avoided
by removing the multiples in g+, but not by removing the
multiples in g−. Therefore, substituting g+ by the initial
focusing function, the imaging condition, in the frequency
domain, is expressed as

I(xI) = ∑
xS

∑
ω

g−(xI , xS) f+d (xI , xS), (5)

where xI and xS represent the focal point coordinates in
the subsurface and the sources/receivers position at the
acquisition surface, respectively.

LS - Marchenko imaging in Julia programming

Julia was chosen for this implementation, even though it
is a young general-purpose programming language, which
has proven to be very efficient and with easy syntax
for code implementation (Gao et al., 2020). The used
version was Julia 1.5.3. As mentioned, the recovery of
the up- and downgoing focusing functions will be carried
out through the LS scheme applied to equation 4, and for
this the LSQR algorithm proposed by Paige and Saunders
(1982) will be used. This inversion scheme is implemented
in various programming languages. For Julia, the code
corresponding to the LSQR scheme is inside the package
IterativeSolvers, which provides iterative algorithms for
solving linear systems, eigensystems, and singular value
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problems.

For the implementation of the LS solution of the Marchenko
coupled equations system, the lsqr function will be used.
Usually, this function has as input parameters the matrix A
and the column vectors y and x, where x can be a column
vector filled with zeros. In addition, in the lsqr function the
matrix-vector product is used in a recurrent way to update x
and y in the next iteration, a product that can be expressed
as follows

y← y+Ax

x← x+AT y.
(6)

For the LS approach of the Marchenko equations, we have
the matrix A composed of a set of sub-matrices, as shown
in equation 4. So the basic idea here is creating a function
called APROD (see Algorithm 1) that lets us choose when
to do the operations Ax and AT y, where

A =

[
I −ΘR

−ΘR∗ I

]
and AT =

[
I −Θ R∗

−ΘR I

]
. (7)

Algorithm 1: APROD function.

input: R, x, y, and arg;
Result: The product Ax or AT y
initialization;
if arg==1 then

y← y+Ax;
else

x← x+AT y;
end
output: x or y;

Finally, with the recovery of unidirectional components
of Green’s function, it is possible to apply the cross-
correlation image condition given by equation 5 and
generate the migrated section. The pseudocode for the
Marchenko imaging, implemented in this work, is given by
Algorithm 2.

Algorithm 2: Marchenko imaging algorithm. The
notation used in the pseudocode is the same notation
from Marchenko equations section.
Result: Matrix image obtained by Marchenko imaging.
Reading parameters;
Reading input data;
Transform R to frequency domain;
Initialization;
for any (x, z) in image space do

compute f+d - using eikonal solver;
compute Θ - using maximum value of each trace of
f+d ;

compute the focusing functions (x) with the LS
approach (lsqr function);

vector x to matrix;
compute g−;
apply image condition, I;

end

NUMERICAL EXAMPLE

In the following, we use a 2D synthetic model to illustrate
the Marchenko algorithm and its benefits to generating
seismic images. The reflection response are modeled in
a constant-velocity (c = 2400m/s), variable-density model.
Figure 1 shows the values for the density as a function
of depth and horizontal position. The density model
is composed of flat layers and a syncline structure.
Density values in the upper part of the model expose
very strong contrasts, so this model will be able to
generate the interbed reflections needed for our tests. The
model consists of 1201× 641 grid nodes with 2.5m grid
spacing. We have simulated the synthetic acoustic impulse
reflection responses R using a finite-difference time-domain
modeling code (Thorbecke and Draganov, 2011), and the
input source signature is approximately a sinc function with
a flat spectrum of unitary amplitude. We computed the
single-sided reflection responses with 201 sources and a
fixed-spread geometry that ranges from −1500 to 1500m
with a 15m distance between sources and also between
receivers, which are located at the acquisition surface -
the top of the model. The duration of each shot record is
1.5s sampled at 2ms. Absorbing boundary conditions are
applied on all sides, i.e., we assume that surface-related
multiples and ghost wave effects are removed from the
recorded dataset. The direct wave has been removed from
the modeled reflection responses by modeling it separately
in a homogeneous medium (values of the first layer) and
then subtracting it from the recorded data. The central
shot (orange star in Figure 1) of the computed single-sided
reflection responses R is shown in Figure 2a, where we can
see the presence of internal multiple reflections.
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Figure 1: Constant velocity, variable density subsurface
model used to generate the single-sided reflection
response. The green dot indicates the subsurface focal
point where the Green’s function is computed and shown
in Figure 3. The dashed gray line indicates the target area
for imaging.

The first arrival of the downgoing Green’s function,
recorded at the surface acquisition for a source at x =
(200, 1350)m (green dot in Figure 1), is shown in Figure
2b. It was constructed by the convolution of the traveltimes
computed from the eikonal equation solver (Faria and
Stoffa, 1994) and a zero-phase Ricker source wavelet
that has its central frequency at 20Hz. The modeled
single-sided reflection responses and time-reversed first
arrivals are used as inputs to construct up- and downgoing
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focusing functions and subsequently the Green’s function,
and for this, equation 4 is inverted using the LS scheme.
The number of iterations for the LS technique is set
at 20. In Figure 3, the Marchenko-computed Green’s
function is compared to the reference Green’s function,
which was modeled using finite differences. The Green’s
function recovered by the Marchenko scheme presents
events similar to those contained in the reference function.
However, there are some differences in the amplitudes of
these events. The colored lines in Figure 3a-b represent
the zero-offset trace positions that were selected for a
more detailed analysis. All traces in Figure 3c have been
normalized by their maximum amplitude. In Figure 3c we
perform a comparison between these traces, and we can
see that the Marchenko scheme successfully retrieves the
Green’s function, thus preserving their phase. According
to Thorbecke et al. (2017), the small amplitude mismatch
present at earlier times is related to the method employed
to estimate the direct arrival, while that, after approximately
0.8s, the amplitude error decreases because the presence
of higher wavenumbers becomes smaller.
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Figure 2: Common shot gather with source position at
x = (0, 0)m (orange star in Figure 1) and receivers at
the acquisition surface. (b) The modeled first arrival of
the downgoing Green’s function from a source at x =
(200, 1350)m (green dot in Figure 1) and receivers at the
acquisition surface. Note that the data on the left are a
broadband data (i.e., flat spectrum wavelet), whereas the
first arrival on the right is shaped by a 20Hz Ricker wavelet.

In the following, we apply the Marchenko imaging scheme
for the zone limited by the gray dashed line in Figure
1, where the selected focal points cover an area of 241
by 146 points (−1200m ≤ x ≤ 1200m and 100m ≤ z ≤
1550m, a total of 35186 points imaged). To generate a
reference image, we have applied the imaging condition
(equation 5) using the upgoing component of the retrieved
Green’s function at the first iteration of the LSQR scheme,
which leads to the conventional RTM image of the target
zone (Zhang et al., 2018). A comparison between the
migrated images is shown in Figure 4. The image in Figure
4a contains artifacts (indicated by the red arrows) from
internal multiple reflections because they are imaged as
if they were primary reflections. However, the image in
Figure 4b, which is obtained by the Marchenko imaging, is
nearly perfect without ghost images due to internal multiple

reflections. We should notice that this result has a better
quality compared to Figure 4a. These results confirm
the successful application of the Marchenko imaging and
show the effectiveness of the implemented algorithm for
attenuating the harmful ghost reflections usually seen in
a conventional RTM.
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Figure 3: (a) The reference Green’s function and (b) the
Green’s function computed with the Marchenko method
after twenty iterations. (c) The comparison of zero-offset
traces.

From the numerical results, we test and also show the
functionality of our implementation of the Marchenko
method using the Julia programming language. The
libraries used here were really useful and helpful to save
o lot of time in the implementation. Besides, Julia
allows us the possibility to use another language (e.g.,
python, Fortran and C/C++), which brings versatility to the
language and makes it possible to use a lot of ready-
made routines. For future works, the comparison between
the iterative substitution and the LS scheme, in Julia, can
be done, and we also suggest the use of PyLops from
Python to see how this library can speed up the current
implemented code.

CONCLUSIONS

The Julia programming language was efficient in
geophysical terms to compute the Green’s functions
and the migrated image using the Marchenko method.
In the numerical examples, the comparison between the
first and the iteration twenty shows that many of artifacts
were attenuated, demonstrating the functionality of the
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code. Pre-existing libraries with the high-level language
that Julia offers accelerate the implementation of the
Marchenko algorithm with the LS approach. The Julia
code could benefit from further optimizations, especially
when considering high size seismic data sets.
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Figure 4: (a) The image retrieved from the modeled
reflection response and (b) the artifact-free image of the
target zone retrieved by the Marchenko imaging. The red
arrows in (a) indicate artifacts arising from internal multiple
reflections.
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