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Abstract   

A common approach to stabilize the ill-posed inverse 
problem is to apply regularization, which corresponds to 
restrict possible solutions for the inverse problems. Thus, 
a regularization term is often incorporated into the 
tomographic error function to resolve the non-uniqueness 
of the inverse geophysical problem. This work aims to 
evaluate the refraction tomography algorithm, the 
regularization effects and analyze their effects on the 
resulting seismic velocities. The study is based, 
methodologically, on a case study on the 2-D synthetic 
seismic survey. The regularizations tested in this work are 
Tikhonov of order 1, the variants of order 1, and order 2. 
The tomography program is based on Podvin's ray 
tracing. Obtaining the travel time matrix uses the finite 
differences scheme with the eikonal equation for the first 
arrivals, computation of the tomographic matrix, and the 
regularization algorithm. The velocity model consists of a 
synthetic based on a shallow seabed channel geology. 
The actual model contains three layers and a seabed 
channel structure, with velocities of 1500 m/s (water), 
2000 m/s and 2500 m/s with the results of transit time 
tomography without regularization with regularization 
schemes. Transit times for tomography are obtained by 
forward modeling of this model, with the same 
tomography algorithm to calculate transit time. We 
conclude that: 1) the results of the tomography show 
better results with better definition and less distortion of 
the structures with the application of regularization; 2) 
Tikhonov regularization of order 2 shows faster 
convergence with improvement in the velocity model and 
3) the parameter sensitivity test shows how much an 
inappropriate choice can distort geological structures. 

Introduction 

Most geophysical studies deal with inverse problems 
since the acquisition of forward measures of physical 
properties is costly. Also, in general, forward measures 
are restricted to areas that are spatially limited and 
difficult to extrapolate to the entire area of interest with the 
necessary accuracy, even with the use of geostatistical 
methods. 

In the geophysics of oil and gas exploration, seismic 
methods have been the most used since the beginning of 
the 20th century (Telford et al. 1990). At the end of the 

20th century and the beginning of the 21st, there was a 
significant advance in the oil and gas industry with the 
large-scale use of 3-D seismic survey data. The increase 
in computational capacities has generated great 
advances, which resulted in a significant impact on deep 
seismic processing (Woodward et al., 2008). Thus, the 
seismic velocity models have become fundamental for 
seismic imaging. 

The areas of interest of the oil industry are, in general, at 
great depths, where the refraction tomography does not 
reach. However, velocity models in the shallow portions 
directly impacts imaging and, consequently, on the 
interpretation of deeper structures. Static correction, 
which is used in the processing of terrestrial data, 
depends on the velocity model in the shallow end and is 
the first source of uncertainties and errors resulting from 
the seismic processing (Lines and Newrick, 2004). 

All available velocity information (tomography, migration, 
well profiles, etc.) must be used and weighted with 
geological information, statistical treatments, and 
geostatistical tools (Maul et al., 2005; Bulhões et al., 
2018). In most cases, the well's shallow part is not 
profiled due to operational (lack of stability) and economic 
factors (Bulhões et al., 2018). Figure 1 presents the 
seismic section of cross reflection by three wells and their 
respective sonic profiles. 

 
Figure 1: Seismic section that passes through three wells and 
their respective sonic profiles. 
Source: Adapted from Bulhões et al. (2018). 

 

According to Menke (1989), an inverse problem can be 
defined as a set of mathematical techniques that extract 
the physical parameters from the corresponding observed 
data and correlate a physical-mathematical model that 
justifies them. A problem is said to be the opposite when 
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it is desired to infer the medium's physical properties from 
recorded data that are external to it. A more 
comprehensive way to define an inverse problem is to 
consider how to obtain the physical model (set of 
properties and parameters) from observed data and 
corresponding observations. This occurs in geophysical 
and geological interpretation examples. 

By the inversion theory, it is defined from Equation 1: 

  d=Gm      Eq. 1 

Where: 
d is the data vector corresponding to an observation; 
m is the model parameter; 
G is the matrix that relates the parameters d and m. 

 
Figure 2 shows schematically what are forward and 
inverse problems. The inverse problem consists of: 
having d and 𝐺, obtain m. The forward problem is to 

obtain d from m and 𝐺. 

 
Figure 2: Schematic representation of a forward and inverse 
problem. 
Source: Bianco (2013). 
 

Hadamard (1902) established that an inverse problem is 
called ill-posed when the solution does not meet at least 
one of the conditions: existence, uniqueness, and 
stability. In a well-posed problem, the three conditions 
mentioned must be satisfied. 
 

According to Zhdanov (2003), all information about the 
physical model (m) it generates (d), according to Equation 

1, is contained in matrix 𝐺. However, there are always 
errors in the measured data, whether in the 
measurement, noise inherent in the system, or associated 
with the physical problem. Due to these factors, it is not 
always possible to find the model, “m”, which describes 
the registered data, “d”, since these errors are not 

considered in the modeling. According to Aster et al. 
(2005), there is a possibility that the model adopted to 
describe the data is not correct (or complete), which also 
makes it impossible to obtain a solution to the problem. 

The least-squares method is an optimization method 
applied during data inversion. That is, it is a method for 
solving linear systems, being very efficient in most cases. 
According to Claerbout and Muir (1973), this type of tool 
for adjusting curves is relatively sensitive to noise with 
very pronounced amplitudes. In the case of the non-linear 
problem, the L2 standard is widely used. Its objective is to 
minimize a specific function, making the residue, which is 
the difference between the calculated data and the 

observed data, be as small as possible and acceptable 
for a given problem. Thus, in the context of least squares 
(L2 norm), the objective function to be minimized is that of 
the square of the residue, given by Equation 2 

  

 φ(m)=║dobs – G(m)║2 2       Eq. 2 

 
Where: 
 dobs is the observed data; G (m) is the calculated data. 
 

Minimizing Equation 2 means looking for the solution that 
has the smallest possible residue to the observed data 
and, consequently, obtaining the parameters that best fit 
the observations. 

To minimize the objective function, it must find the points 
at which your derivative is zero. Thus, by deriving 
Equation 3 and equaling to zero, one obtains 

m = [GT G]-1 GT d     Eq. 3 

Substituting m for Δm gives: 

    Δm = [GT G]-1 GTΔd   Eq. 4 

Δm is the velocity model update term. The term depends 
on the inverse of the GTG matrix. In Equation 5, the 
updated model mi+1 

  mi+1 = mi + Δm   Eq. 5 

The tomographic process will run a number of predefined 
iterations is reached or when the residue is less than the 
stipulated value (Equation 6). 

 ║d – Gms║2 2 < δ         Eq. 6 

Where:  

║d – Gms║2 it is the norm of the error between the 

observed data and the predicted data; and 𝛿 is the value 
chosen as a tolerance for the error norm between the 
observed data and the predicted data.  

This paper presents a study on the impact of 
regularization on refraction tomography. The study area 
represents a coastal environment, close to South Boston, 
Massachusetts (Zhang and Toksöz 1998), a shallow 
structure 2-D velocity model. To achieve this objective the 
paper is divided in the next following topics: In the method 
topic we describe the experiments; in the results we 
present, discuss and analyze the employed 
regularizations; finally we describe the conclusions. 

Method 

According to Zhdanov (2003), Tikhonov's work 
importance is related to the mathematical demonstration 
that ill-posed problems can be solved. With the 
continuous 𝐺-1 operator in this set, it is necessary to know 
a priori that there is a solution contained in a subset of all 
possible solutions. When this subset is selected, the ill-
posed problem becomes conditionally well-posed. 

In the particular case of some indeterminate linear 
systems (with several unknowns below the number of 
equations), a studied solution was to approach the 
minimum norm's least-squares. That is, there is an 
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additional term associated with the quadratic discrepancy 
term. This can be generalized to solve ill-posed problems, 
and it is necessary to provide additional information. The 
regularization method consists of determining the softest 
approximate solution and checking its compatibility with 
the observed data for a given noise level. 

The purpose of regularization techniques is to make the 
operator who inverts the data continuously; this is 
equivalent to making the solutions stable and the problem 
well-posed.  When regularizing the inversion, the problem 
to be solved is no longer precisely the original problem 
and becomes a problem that approaches the original 
(Figure 4). The smoothing factor (or parameter) (𝜆) 
determines the weight given to smoothing in the inversion 

process, and according to 𝜆 tends to 0 the smoothed 
solution (m𝜆) must tend asymptotically to the correct 

solution mc (ZHDANOV, 2003), as well as the smoothed 

operator must tend to the 𝐺-1 operator. 

 
Figure 4: Schematic representation of an ill-posed problem. 
Source: Adapted from Velho (2008). 

 
The solution of the inverse problem without regularization 
is the minimization of  ║d – Gms║2, called objective 
function (Equation 7): 

 min║d – Gms║2    Eq. 7 

To obtain a general expression to be minimized, simply 
apply Lagrange multipliers to the given condition, the 
result of which is: 

   min║d – Gms║2 
2

 + 𝜆2║ms║2 
2      Eq. 8 

The higher order Tikhonov regularizations follow the 
same logic as zero order regularization, just replacing the 
minimization of the ms norm by minimizing an ms function 
(Equation 9). 

 min║d – Gms║2 
2

 + 𝜆2║Lms║2 
2    Eq. 9 

Where: 

L is the matrix of the operator considered (derived first or 
second from ms). 

The Tikhonov regularization of order 1 uses the first 
derivative of ms (Equation 10) and the regularization of 

order 2, the second derivative (Equation 11). Thus, a 
more generic equation is: 

       Eq. 10 

            Eq. 11 

If the matrix L is considered as the identity matrix, it is the 

zero order regularization. 

The acquisition geometry for parameterization of the 
forward modeling is defined as the interval between 
shooting points in 40 m, the total number of shots 176, 
depth of sources and receivers 20 m, the interval between 
receivers 10 m, the total number of receivers 150 and is 
represented in Figure 5. 

Figure 5 shows the representation with the real velocity 
model and the acquisition geometry. The actual model 
contains three layers and a seabed channel structure, 
with velocities of 1500 m/s (water), 2000 m/s, and 2500 
m/s. In addition, the velocity model consists of 250 × 25 
cells with a uniform spacing of 10 m. In the study, the 
actual model was compared with transit time tomography 
results without regularization with Tikhonov's 
regularization schemes. Transit times for tomography 
were obtained by forward modeling of this model, with the 
same tomography algorithm to calculate transit time. 

 

 
Figure 5: Representation with the real velocity model and the 
acquisition geometry. 

The initial velocity model used for tomographic inversion 
is shown in Figure 6, consisting of two flat, parallel, and 
horizontal layers with velocities of 1500 m/s and 2500 
m/s. 

 
Figure 6: Initial model of entry of refraction tomography. 

 
In Figure 7, the real velocity model is represented with the 
model resulting from the refraction tomography without 
applying the regularization. The difference between the 
real and calculated model is in Figure 7. The residual of 
the tomographic process as a function of the iteration is 
shown in Graph 1. The axis referring to the residue is in 
the logarithmic scale at base 10. It is observed in this 
graph that the convergence of the tomographic inversion 
occurs from iteration 28. 
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Figure 7: (a) Actual velocity model and (b) Tomography result 
without applying regularization. 
 
 

 
Graph 1: Variation of the residual of the tomographic inversion 
without regularization according to the iteration. 

The analysis of the effects of regularization took place 
through a sensitivity study based on the regularization 
parameters, which impact the algorithm's convergence 
and stability and the resulting model. The stability is 
analyzed using graphs of the behavior of the residue as a 
function of iteration. 

Examples 

For the analysis of the effect of regularization on 
refraction tomography in the present work, the program 
implemented by the Seismic Imaging Group of 
Universidade Federal Fluminense is used. It is  based on 
Almeida's work (2013), which uses finite differences 
method to calculate transit time from eikonal equations 
and complemented by Bulhões (2020).  

We apply Tikhonov regularizations of order 1 and order 2. 
In the case of order 1, three implementations are applied: 
(i) conventional (derived in the horizontal and vertical 
directions), (ii) the derivative in the horizontal component, 
and (iii) the derivative with the advanced scheme. The 
tomographic inversion is applied for values of the 
regularization parameter varying from 10-8 to 103. 

In Tikhonov's regularization of order 1, the term added to 
stabilize the inverse problem is the first derivative in the x 
and z directions (and y in the 3-D case) defined by 
Equation 10.  

The second regularization approach  is  the adaptation of 
the 1st order Tikhonov regularization, using only the 
horizontal component of the derived operator. The third 
approach adopted to implement the Tikhonov 

regularization of order 1 uses the advanced scheme in 
the derived operator. 

The last approach adopted in the study is the Tikhonov 
regularization of order 2. This regularization is the second 
derivative of the model in the spatial directions (Equation 
11). 

Results 

Graph 2 shows the residual transit time calculated as a 
function of the iteration for the regularization parameters. 
For λ = 1000, numerical instability occurs during the 
tomographic process. It is also observed that for values 
less than 1000, the process runs smoothly without 
sudden variations, and the residue converges to values 
around 6x10-7. 

To obtain optimal values for regularization is not trivial. 
There are strategies to be modeled, such as the L-curve, 
but there is always a need to execute the tomographic 
inversions and from the results and observe what best 
fits. In other words, the L-curve has no predictive power. 
Each physical problem will present an optimal value for 
the regularization parameter according to the order of 
magnitude of the modeled property. 

Among the regularization cases tested, the optimum 
values  of the parameters λ for each scenario are located 
at the apex of the residue curve as a function of the 
parameter λ and this optimum value for each scenario. 
Graph 2 shows the RMS residue of the transit times as a 
function of the parameters. 

 

 
Graph 2: RMS residue of transit time as a function of 
regularization parameters. 
 

Graph 3 shows the RMS residue variation in transit time 
as a function of the iteration for the respective optimal 
values and compared with the tomography without 
regularization. The convergence of tomography without 
regularization occurs after 31 iterations. With 
regularization, convergence occurs in iteration 22 (order 
1), 25 (order 1 horizontal component), 28 (order 1 
advanced scheme) and 17 (order 2). 
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Graph 3: RMS residue of transit time as a function of iteration for 
cases with and without regularization. 

 

In Figure 8 there are the real models and the tomography 
results without regularization and the scenarios using the 
optimal parameterization values. Without regularization, 
the structures are distorted (Figure 8b). The same 
distortion occurs in cases of order 1 regularization (Figure 
8c). On the other hand, in the cases, order 1 horizontal 
component (Figure 8d), order 1 with the advanced 
scheme (Figure 8e), and order 2 (Figure 8f) do not 
present distortion in the structures. 

 
Figure 8: (a) Real model, (b) Tomography without regularization, 
Tikhonov regularization (c) order 1, (d) order 1 horizontal 
component, (e) order 1 advanced scheme and (f) order 2. 

Table 1 shows the summary of the tested regularizations 
and the individual results after the 40 iterations of the 
tomographic process. The Table 1 describes the optimal 
value of the parameter λ for Tikhonov regularization; the 
step in which the inversion begins to converge to the 

respective parameter λ and the RMS residue of the transit 
time compared to the actual data, δt. 

The use of Tikhonov regularizations of order 2 converges 
the tomographic process faster from step 17. In the case 
of the use of Tikhonov regularization of conventional 
order 1, second line in Table 1, the convergence of the 
tomography occur in smaller number of steps than without 
regularization, 31 and 28 respectively. 

 

 
Table 1: Summary of the regularizations applied with the 
respective waste statistics in the 40th iteration. 

The best result obtained for this scenario goes against the 
results obtained in Denisov et al. (2006) and 
Teimoornega and Poroohan (2010). In both studies, 
second-order Tikhonov presents better feature delineation 
than Tikhonov of order 1. 

Conclusions 

The study aims to evaluate the algorithm of refraction 
tomographic inversion in the shallow surface and the 
effects of regularization on refraction seismic 
tomography—the effects of this regularization on the 
resulting seismic velocities. 

The analysis carries out that regularization alone is not 
enough to solve ill-posed problems. The use of 
regularization or inadequate parameter values does not 
add a correction to the tomographic result. The sensitivity 
study results for Tikhonov regularizations shows that 
there are distortions in the geological structures for a 
range of values of inadequate regularization parameters. 

The velocity model resulting from refraction tomography 
using classical -order 1 regularization (derived in the x 
and z directions) does not solve the existing problems 
without regularization and shows significant numerical 
instability. 

Refraction tomography using order 2 Tikhonov 
regularization converges faster than the other cases, with 
17 iterations. The value of the parameter that results in 
the optimal model is λ = 100 with fewer structural 
distortions. Although order 1 with horizontal derivative 
presents the best result for the models, its convergence is 
very slow, only after 28 iterations. 
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