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Abstract

This study explores the use of the Bostick Transform as
a tool for generating initial models in 2D Magnetotellurics
inversion. The Bostick Transform is a method that
estimates resistivity distribution based on apparent
resistivity and phase data for 1D datasets. A comparison
is made between the results obtained using the resulting
distribution and those obtained using a homogeneous
model with mean resistivity values. The findings
indicate that the initial models generated using the
proposed approach exhibit characteristics similar to the
true model, although with some degree of smoothing.
The Bostick Transform-based models demonstrate better
performance in terms of lateral delimitation and capturing
conductivity anomalies compared to the homogeneous
model. Moreover, the inversion process shows improved
convergence speed when initiated with the Bostick
Transform-based models. Although the study utilizes
synthetic data, the results suggest that incorporating the
proposed prior knowledge can enhance the efficiency of
2D Magnetotellurics inversion.

Introduction

The 2D Magnetotellurics modelling is a highly non-linear
problem, and the only way to recover the parameters of a
data set is by an inversion procedure. The usage of this
method in solving 2D MT is well-established and had been
optimized for quite some time, to assure that the solutions
are stable and unique, and to reduce the computational
overhead of this process.

A common need among all proposed optimizations is
that the first model fed to the inversion procedure has
to be close as possible to the original/real parameters.
For real surveys, the prior information is integrated by
using parameters defined by other geophysical methods,
if its scarce or non-existent, usually its assumed a
homogeneous model with all parameters defined by the
same value. The latter approach causes an increase in
iteration numbers and more computational overhead.

Before the inversion become computable practical, it was
common to employ approximated methods to recover
conductivity on the subsurface, one of these methods is the
Bostick transform, which maps a conductivity distribution
on depth from a set of apparent conductivity and phase
on frequency. This method can be resumed by two simple

equations, calculated at no time. Geosystem (2011) and
Neves (2021) uses the Bostick Transform to provide a
preliminary guess model for 1D inversion.

We investigated the viability of building a first model by
using the conductivity distribution of Bostick from our 2D
data set, to initiate inversion closer to the solution in
such a way as to reduce the number of iterations of the
problem. We tested his approach in a synthetic data set
and compared it with an initial model with the resistivity
values set as mean of apparent resistivity.

Methods

Magnetotelluric Method

The Magnetotelluric method listens to the natural
electromagnetic field on the surface, its independent
polarization, to build an impedance matrix(Vozoff, 1991).
For 2D evaluations, its gathered only the horizontal
components of the field related by[
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In order to use the Bostick Transform, the data set has to
be rearranged as four frequency-dependent sets: apparent
resistivity and phase for two different Modes: Transversal
Magnetic Mode,

ρyx =
1

ωµ0
|Zyx|2, φyx =

Im( ¯Zyx)

Re( ¯Zyx)
(2)

, and Transversal Electric Mode,

ρxy =
1

ωµ0
|Zxy|2, φxy =

Im( ¯Zxy)

Re( ¯Zxy)
(3)

A finite element method was used to model the 2D
magnetotelluric data; it is a numerical technique that
separates a physical domain into smaller subdomains
called finite elements. The electric and magnetic field
equations are approximated using basis functions for each
element, therefore forming an algebraic equation system.
Solving this system produces the electric and magnetic
field for each element(Key & Weiss, 2006).

Bostick Transform

The Bostick transform is a method for generating a
resistivity distribution by depth using magnetotelluric data.
It was built by looking at the asymptotic behavior of the
apparent resistivity curve and phase at low frequencies
in models of a layer over an infinite basement. Bostick
(1977) provides the correlations between resistivity in the
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frequency domain and resistivity in the space domain,

ρ(hn) = ρa(Tn)
π

2 −φ(Tn)

φ(Tn)
(4)

Where h is an approximation of the skin depth for a
semispace in which the resistivity is equal to the apparent
resistivity on the frequency Tn,

hn =

√
ρap(Tn)Tn

2πµ0
(5)

Inversion

Given a set of observations y and a set of parameters
p, there is a mathematical model f that describes data
from parameters and variables independent, such as
measurement positions or frequencies:

yyy = fff (ppp), (6)

the observations are the apparent resistivity and the
phase for each frequency and the parameters are as
layer resistivity of an interpretive model defined a priori
as a discretization of the earth in the form of a stratified
medium. To estimate the parameters p , it was
implement the method of Gauss-Newton, with Levenberg-
Marquardt iterations and the inclusion of regularization in
the parameters (Pujol, 2007).

The whole process depends on the derivatives of the
function f at to the parameters in vector p. This information
is organized in the form of the so-called sensitivity matrix,
defined as

Si, j =
∂ fff (yi)

∂ p j
. (7)

On the nth iteration, the parameter array is updated through
the estimator

pppn+1 = pppn − (λnIII +HHHd +µ HHHr)
−1(GGGd +µ GGGr) (8)

where HHHd is the matrix of the second derivatives of
the function f , which in the Gauss-Newton method is
approximated by

HHHd = SSSTSSS (9)

gggd is the gradient of the functional being adjusted in relation
to the parameters; HHHr and gggr are, respectively, the matrix of
second-order derivatives and the gradient associated with
the functional that describes the regularization; λ is the
Marquardt parameter, which is adjusted in each iteration
and which controls the behavior of the method, and III is the
matrix identity.

The definitions of HHHr and gggr depend on how you
define the functional of regularization to the parameters.
Regularization restrict the search for the problem solution
to a subset with certain restrictions, in a certain
configuration, or contain any a priori information. One way
to define these restrictions is to create a new functional Φ,
with a functional for the regularization parameter Φr, is a

relative weight of the information of the links in relation to
that of the data.

Φ(ppp) = ΦD(ppp)+µ ΦR(ppp), (10)

In this job, we implemented the Global Smoothness
(GS), that establishes a relation of equality between the
components of vector p, in the sense of least squares,
to find a solution with the smallest variation between
neighboring parameters (Constable et al., 1987). For N
parameters, we have:

ΦR(ppp) =
N−1

∑
j=1

∥p j+1 − p j∥2 (11)

To execute the inversion procedure, the inital marquadt
parameter was set as λ0 = 0.001 and global smoothness
parameter µ = 0.02 .

Initial Model

The inversion grid was constructed within the boundaries
of the first and last station, that are 6 kilometers appart.
The maximum depth chosen was 3 kilometers. In terms
of dimensions, the grid consisted of 51 nodes horizontally
and 31 nodes vertically, resulting in a total of 1500 cells.
Established a geometry model, the parameters should be
atributed for each cell, two methods of filling were used.
The first one, filled all cells with the same value of resistivity,
taken from the geometric mean of apparent resistivity.

The second one, using the Bostick Transform for each
station, it was found the resistivity-depth distribution, it was
taken the log of this values, and were used for interpolated
linearly the log resistivities for all the cells under each
station. Once this is done, the remaining cells are fillied
by a new interpolation, this time between each station. At
the end, the values are coverted back to linear values of
resistivity and phase.

Building the dataset

To build the dataset, it was simulated a sounding of a
condutive block inside a two layers mean, the following
layers were set as: And the block, 900 meters tall and 500

Resistivity (Ω.m) Depth (m)
100 1517
200 -

meters wide, 400 meters down the surface,

It were used 20 stations, 300 meters apart and get 20
impedance values for each one, in the frequency range
from 1000 Hz to 0.001 Hz. All values for resistivity and
phase were contaminated with a random noise of 1 %
maximum.

Results

By forward modelling the parameters described in figure 1,
it was gotten the following resistivity and phase data,
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Figure 1 – Distribution of MT sounding stations across the
2d resistivity model, and the value for each layer and body.
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Figure 2 – Pseudosection of resistivty for TE mode
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Figure 3 – Pseudosection of phase for TE mode

By inspecting figures 2 and 3, its clear that the conductive
body causes a influence on the TE sounding higher
frequencies that spreads for the majority of the stations,
even the borders of the datatset. More pronounced on the
resistity dataset than the phase.
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Figure 4 – Pseudosection of resistivty for TM mode
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Figure 5 – Pseudosection of phase for TM mode

Figures 4 and 5 shows that the influence of the body is
more restricted, to the stations immediate near to it, in
which it provokes a phenomenon called static shift (Jones,
1988), in this sounding, that distorts all the signal for
frequencies less than 100Ω.m, for stations not over the
conducive body, the signal for both phase and resistivity
seems almost 1D.

The initial model are set by Bostick transform from TE data,

By inspecting the model described in figure 6, we can see
that it has the main characteristics of the true model, with
resistivity values exaggerated smoothened.

Figure 7 shows a model with a static shift observed in
data, near to the conductive body, it seems less verticality
accurate, but it gives a good lateral delimitation between
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Figure 6 – Initial model from TE impedance
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Figure 7 – Initial model from TM impedance

the surrounding mean and the body, it shows more strong
values of resistivity, but still somewhat smooth.

If the grid were deep enough, the Bostick transform
would eventually recover the resistivity value from the
substract. The magnetotelluric method suffers from
parameter resolution, and that problem is potentialized by
the approximation.

With the proposed approach for the initial model, the best
fit model took 26 minutes to be achieved. In contrast,
using the usual homogenous initial model, the best fit
was achieved in 31 minutes. Meaning a reduction of
computational overhead of approximated 20 %.

The path until convergence for the models are as followed,
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Figure 8 – Convergence path for the problem: Proposed
Approach for initial model vs Homogenous Approach

The initial misfit for Bostick model in figure 8 indicates
that this initial model is near to the real parameters than
the Homogenous model. But, Bostick model shows a
slower drop on the misfit functional than the one using
the homogenous model, indicating that using the same
Marquadt parameter λ and Smoothness Parameter µ for
both models may not be adequate.

The model resulted of the inversion shows that both models
were successful to recover the main features of the original
model, showing two layers and a conductive body at the
center of the model.

Conclusion

Despite approximations and simplifications in
magnetotellurics modelling and inversion, the Bostick
Transform method proves advantageous for initializing
models. It saves computational time compared to
homogeneous models by reducing iterations required for a
solution.

Additionally, initial models utilizing this method display
key characteristics of the true model, albeit not perfectly
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Figure 9 – Best fit model generated by the inversion

accurate. This suggests that it reasonably approximates
the subsurface resistivity distribution, bringing the inversion
process closer to the true solution.

Furthermore, comparing initial models generated using the
Bostick Transform and homogeneous models with mean
resistivity values reveals the former’s superiority in lateral
delimitation and capturing conductivity anomalies.

While these results are based on synthetic data and require
validation with real-world data, they offer promising insights
into the advantages of utilizing the Bostick Transform for
initializing 2D Magnetotellurics inversion. Incorporating
prior knowledge derived from the Bostick Transform can
potentially enhance inversion accuracy and efficiency,
leading to more reliable interpretations of subsurface
conductivity structures.

In conclusion, the Bostick Transform demonstrates promise
for generating initial models in 2D Magnetotellurics
inversion. It reduces computational overhead, expedites
convergence, and reasonably approximates the true
resistivity distribution, capturing essential subsurface
features. Further research and real-world applications are
necessary to fully assess its effectiveness and benefits in
the field of Magnetotellurics.
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