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Abstract 

The static and dynamic data shortage in most subsurface 
reservoirs makes it extremely difficult to understand the 
spatial distribution of the different scales of geological 
heterogeneities (e.g., mounds, natural fractures). The 
absence of labeled data complicates the application of 
supervised machine learning algorithms. So, curating 
labeled training data has become the primary bottleneck in 
machine learning. Deep generative models have been 
proposed to synthesize labels at a proper scale in areas 
with weak supervision sources to accomplish the labeled 
data scarcity problem. Recently, a joint labeled seismic 
data expansion generative method has been proposed 
based on Variational Autoencoders and Gaussian Mixture 
Models. In this paper, we extend this strategy by using as 
input multi-channel data (pre-stack full-azimuth seismic 
data) as considering independent channels by azimuths. 
Moreover, a Bayesian Gaussian Mixture Model prior 
conditioned by the variational inference is proposed to fit 
the deep feature distribution of each class. The 
probabilistic Gaussian mixture model is resampled for each 
class to provide depth features expansion into the decoder 
and generate expansion-labeled seismic data. This 
strategy is applied to a Santos basin Pre-salt reservoir to 
expand labeled mounds facies identified by wells. The 
approach quickly overcame an important labeled data 
issue to support seismic characterization, minimizing 
overfit problems and improving the recognition of mounds' 
architectural elements in the field. 
 

Introduction 
 
The static and dynamic data shortage in most subsurface 
oil and gas reservoirs makes it extremely difficult to 
understand the spatial distribution of the different scales of 
geological heterogeneities and, consequently, influences 
in obtaining realistic flow scenarios. 1D data generally 
consists of indirect data from electric profiles or direct data 
acquisition from cores and side samples; both are acquired 
sparsely (Nelson, 2001). When using only well log data or 
rock samples, the natural heterogeneous behavior of the 
geological patterns can be incorrectly represented both by 
the sampling bias in the well, caused by the well orientation 
concerning the average direction of the structures, and by 
the uncertainty in the extrapolation between the wells 

(Lorenz & Hill, 1994). To fill a 3D reservoir model, we must 
define field-scale characteristics between wells.  
Machine learning algorithms have been widely used in 
subsurface reservoir modeling to bring quantitative criteria 
based on seismic data for defining the parameterization 
and spatial distribution of the main geological features 
within a production zone (Li et al., 2021; Liu et al., 2023). 
Nevertheless, the need for labeled data (prior knowledge) 
complicates implementing supervised strategies. Curating 
labeled training data has become the primary bottleneck in 
supervised machine learning due to the scarcity and bias 
of labeled data from wells. In some specific deep learning 
tasks (e.g., seismic pattern recognition), it is necessary 
having thousands or more labeled data (Bach et al., 2017). 
Moreover, producing labels can be overwhelming due to 
the specialized domain expertise required (Eadicicco, 
2017). To overcome this bottleneck, the adoption of 
generative models for synthesizing training data from weak 
supervision datasets has spread to subsurface reservoir 
modeling. 
Deep Neural networks are one of the many methods to 
obtain a function approximation due to the ability to learn 
representations. For example, Li et al. (2020) proposed a 
semi-supervised methodology combining Variational 
Autoencoders (VAE) with the Gaussian Mixture Model 
(GMM) to expand post-stack seismic labeled data. The 
VAE algorithm is an unsupervised generative model that 
learns efficient data encodings from the seismic data as 
input (Kingma et al., 2013). Furthermore, unlike an 
autoencoder (AE) algorithm, the VAE forces the latent 
variables coded to become normally distributed, making 
the latent space more continuous and less sparse (Higgins 
et al., 2021), which brings some benefits. For instance, the 
variability observed in the interpolated latent space can be 
used to synthesize new data.  
To tackle the over-fitting problem, the VAE training 
considers the whole seismic data as input. Once VAE is 
trained, the Encoder architecture encodes each labeled 
data separately, regarding the wells prior knowledge to 
obtain the labeled deep feature distribution. Then, the 
labeled deep feature codes are submitted to a GMM to fit 
the data distributions and obtain probability density 
functions for each class. Next, despite the clustering 
purpose, we expand the labeled depth features by 
resampling the probability density functions models to 
obtain pseudo-labeled deep features codes. Finally, the 
resampled pseudo-labeled codes are submitted to the 
Decoder architecture to generate new pseudo-labeled 
samples. 
This paper expanded the Li et al., 2020 methodology to 
overcome a Mound labeled data weak supervision in a pre-
salt reservoir from Santo’s basin, Southeast Brazilian 
margin. The methodology considers the possibility of using 
jointly different types of input data arranged as different 
channels of the VAE input, such as full-azimuth pre-stack 
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seismic data, as shown by Silvany et al., 2021. The 
Bayesian VAE-GMM semi-supervised labeled data 
expansion method overcomes important issues for 
subsurface reservoir characterization, for instance, 
avoiding unbalanced learning problems (e.g., mounds 
features, natural fractures zones) and allowing supervised 
methodologies applications. 
 

Reservoir Geological Setting 
 
The field is located in the Pre-salt Santos basin, Brazilian 
Southeast margin. The rocks correspond mainly to the 
lacustrine carbonates of the Barra Velha (BVE) Formation, 
deposited during the Aptian age and, subordinately, to the 
bioclastic carbonates (coquinas) of the Itapema Formation 
of the Barremian age (Figure 1). The structural 
configuration is the dominant factor in controlling the 
distribution of the facies and the characteristics of the 
identified reservoirs since it directly influences the 
dynamics of the circulation of the Aptian/Barremian lake. 
The reservoir would have remained as a structural high 
throughout its deposition, conditioned by the activity of 
normal faults, with a preferential direction N-NW to N-NE 
resulting from overlapping deformational events related to 
the predominantly extensional kinematics of the rift 
tectonics. 

 

Figure 1 (a) Structural map of the salt base of the field. 
Note the occurrence of Mounds features with preferential 
N-NW to N-NE direction associated with the BVE100 and 
BVE200 zones. (b) The correlation between wells A and B 
shows the main depositional facies for the BVE100 and 
200 reservoir zones. 

The reservoir is marked by carbonate mounds composed 
of precipitated and travertine facies of excellent permo-
porous quality, associated with reworked facies, 
characterized mainly by intraclast grainstones and 
rudstones (Figure 1). The latter assumes particular 
importance in the southeastern region of the field due to 
the presence of an elongated horst in the NW direction, 
which would have favored sedimentation in a context of 
high energy. Instead, towards the flank of the mound 
structures and the main horst, facies developed in an 
environment of low depositional energy predominate, 
comprising spherulites and laminites, which may have a 
high proportion of magnesian clay and organic matter. In 
addition to depositional aspects, secondary features 

resulting from dissolution, brecciation, dolomitization, and 
silicification processes are observed, attributed to 
hypogenic karstification, with strong control of faults and 
fractures in the percolation of diagenetic fluids (Figure 1). 

Variational Autoencoders  
 
To apply an auto-codifier network for generative purposes, 
we must be sure that the latent space is somehow regular 
(Doersch, 2016). So, to parametrize coding function fφ, it 
will be used an Auto-Encoding Variational Bayes (AEVB) 
approach, which uses a Stochastic Gradient Variational 
Bayes (SGVB) estimator to approximate a posterior 
inference and generate a continuous latent space (Kingma 
et al., 2013; Doersch, 2016). The process consists of 
generating a prior distribution P*θ(Z) and a value Xi from 
some prior conditional distribution P*θ (X|Z). We assume 
that the prior and likelihood come from parametric families 
of distributions P*θ(Z) and P*θ(X|Z) and that their PDFs are 
differentiable almost everywhere (Kingma et al., 2013).  
The VAE architecture is composed of two subnets (Figure 
2). The encoder will refer to the probabilistic recognition 
model fφ(z|x) since, given a datapoint Xi it produces a 
distribution (e.g., a Gaussian) over the possible values of 
the code Zi from which the datapoint Xi could have been 
generated. The encoder subnet is composed of a 
sequence of convolutional and max pooling layers that are 
applied over the input as a convolution, which permits 
identifying patterns in the input image in a way that is 
invariant with translation. The max pooling layer down 
samples the input. The encoded distributions are chosen 
to be normal so that the encoder can be trained to return 
the mean (Zmean) and the covariance (Zdev) matrix that 
describe these Gaussians, which are used to obtain the 
latent feature Z = Zmean + Zdev for each input Xi (Figure 2). 
On the other hand, the decoder will refer to a probabilistic 
reconstruction model fθ(x|z) since, given a code Zi it 
produces a distribution over the possible corresponding 
values of Xi, as similar as possible to the original seismic 
input (Figure 2). The decoder subnet implements an 
inverted pyramid: it is composed of a sequence of 
upsampling and convolution layers. Upsampling layer 
typically doubles the size of the image, assigning to the 
output pixel the nearest pixel of the input.  

 

Figure 2 The structure of VAE. 

The training of the VAE does not depend on labeled data; 
it is an unsupervised learning method. The learning is done 
by minimizing the evidence lower bound (ELBO) objective 
function (equation 1) (Kingma et al., 2013). The ELBO 
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considers two terms: The first term measured the 
differences between the posterior and prior Gaussian 
distributions using Kulback-Leibler divergence (KL). This 
term regularizes the organization of the latent space by 
making the distributions returned by the encoder fφ(z|x) as 
close as possible to a standard normal distribution 𝑝𝜃(𝑧). 
The second term measures the reconstruction error for an 
input Xi, where an encoding Z is sampled from fφ(z|xi), then 
the probability density of a perfect reconstruction is given 
by 𝑝𝜃(𝑥i|𝑧). 

ℒ (𝜃, 𝜙; 𝑥) = −𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝𝜃(𝑧)) + 𝐸𝑧∼𝑞𝜙[log𝑝𝜃(𝑥|𝑧)] (eq. 
1) 

Gaussian Mixture Models 
 
Clustering algorithms, such as K-means (Lloyd, 1982) or self-
organizing maps (SOM) (Kohonen, 1990), are based on the 
notion of distance or dissimilarity. Although, those approaches 
have limitations in estimating the uncertainty measure 
or probability, which defines the reliability of a data point 
associated with a specific cluster. Instead, finite mixture methods 
such as Gaussian Mixture Models (GMM) attempt to do it 
(McLachlan et al., 2000).  
The GMM is a function that is comprised of several Gaussians, 
each one associated with a cluster. Each Gaussian in the mixture 
is comprised of the mean (μ) that defines its center, a covariance 
(Σ) that defines its width, and (iii) a mixing probability (π) that 
defines how big or small the Gaussian function will be (Figure 
3). Each Gaussian explains the data points Zi, and the mixing 
coefficients are themselves probabilities.  
 

 

Figure 3 Image showing three Gaussian functions’, 
hence K = 3.  

Additionally, a variational Bayesian approach can be used 
to fit the GMM, named Bayesian GMM (BGMM). Each 
point parameter of our model is a variational posterior 
probability distribution (Roberts et al., 1998). The training 
to optimize the parameters of those variational posterior 
distributions to be as close as possible to the true 
posteriors is done with stochastic variational inference.  
 

Method 

Li et al., 2020, proposed that once trained the VAE in the 
entire data set 𝑿 ⊂ ℜ௠௫ேభ௫ேమ, we will transform the labeled 

data Xk, 𝑿 ⊂ ℜ௠௞ భ௫ேమwith the nonlinear mapping fθ: Xk → 
Zk, where m is the number of samples, k is the index 
category, N1 is the number of time samples, N2 is the 
number of traces samples. First, we use VAE to 
parametrize the transformation function fθ. Then, we apply 
the trained Encoder to make the transformation fθ: Xk → Zk 
for the input panels considering the prior K labeled data. 
Observe that the input for the Encoder is the same data 
used in the VAE training, but now separated by the prior 
index category. Next, the coded set Zk

 is submitted to the 
BGMM clustering algorithm to fit the probability density 
functions for each class f(z|μk, Ʃk). Also, the Encoder 
outputs Zk_mean and Zk_dev is used to condition the BGMM 
prior parameters. After that, we resampled the BGMM 
probability density function separately by the index 
category k to obtain the pseudo-deep features Z’k. The 
final step is inputting the pseudo-deep features Z’k in the 
Decoder to generate pseudo-labeled samples X’k. 
Henceforth the VAE training will be done using all real and 
pseudo images to overcome unbalanced learning 
problems or allow supervised methodologies applications. 

Figure 4 shows the methodology applies in this paper. 
 

  
 
Figure 4 - The methodology. 
 

Pre-salt reservoir case study   

The results for the Pre-salt reservoir were obtained with the 
analysis of full-azimuthal broadband seismic data. The 
data was obtained by reprocessing using two available 
seismic data acquisitions. The first is a 3D seismic survey 
carried out in 2010, when 77 circles with a radius of 6.25 
km were acquired, making up an area of 222 km² of 
azimuthal coverage greater than 180°. In addition, a 
second 3D streamer acquisition was included, heading 
N122°, the most recent one in the area. The objective of 
the reprocessing was to improve the imaging of the area of 
interest, with high structural and stratigraphic complexity, 
in addition to providing anisotropy information and the 
possibility of exploring full-azimuthal attributes for the 
characterization of the reservoir. 
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Pre-stack seismic gathers and CWT Voices attributes 
(Silvany et al., 2021) referring to four azimuth sectors (N0o, 
N45o, N90o, and N135o) were collected to extract time-
offset and time-frequency panels as a multi-channel input 
for training the VAE network. The BVE110 and BVE200 
intervals were chosen. The BVE110 zone has an average 
thickness of 95 meters, with a maximum of 292 meters in 
the carbonate mounds. The BVE200 zone has an average 
thickness of 110 meters, with a maximum of 310 meters in 
the carbonate mounds area. The time-offset and time-
frequency panels both have 25 traces. The feature space 
is generated as a vector space with a dimension of 32 
components, equivalent to a dimensionality reduction of 
approximately 95%. Figure 5 shows examples of the input 
data, the coded latent features, and the network 
reconstructions by azimuth. 

 
Figure 5 (a) Six examples of input time panels extracted 
from CDP's and Voices collections for azimuths N0o, 
N45o, N90o, and N135o, respectively; (b) Six examples of 
encoding generated by VAE for azimuths N0o, N45o, 
N90o, and N135o, respectively; (c) Six examples of 
reconstructed outputs images for azimuths N0o, N45o, 
N90o, and N135o, respectively. 
 
Figure 6a shows the mounds prior seismic labeled data 
occurrence for the BVE reservoir zones in red, regarding 
the well’s cores and logs interpretation, and cautions rifts 
carbonate depositional conceptual model extrapolation 
(Figures 1). However, those prior areas constitute less than 
2 percent of the whole seismic input data and, given the 
small data quantities, constitute an unbalanced problem for 
mound deep-learning architecture learning and prediction 
far from the wells. Therefore, we introduce the VAE-BGMM 
methodology to add new pseudo azimuthal pre-stack 
images as input for the VAE training. Figure 7a and 7b 

shows the pseudo-reconstructed images X’ and pseudo 
deep codes Z’, respectively. 
First, the whole pre-stack and voice azimuth data were 
introduced to the VAE-BGMM architecture learning. Figure 
6b shows the seismic facies map with six clusters obtained 
by applying the methodology only considering the real 
data. Then, once VAE was trained, new pseudo azimuthal 
pre-stack mounds images were generated by decoding the 
pseudo-latent features Z’k (Figure 7). Hence, the pseudo-
new images were encoded with the original seismic data 
resulting in the seismic facies map with six clusters shown 
in Figure 6c. Notice that, despite the similarities in both 
maps (Figure 6b and 6c), the mounds occurrence zones 
(purple color) in Figure 6c are more restricted regarding the 
mounds conceptual model for the area and have sharp 
geometries. Nevertheless, both maps constitute different 
scenarios that contribute to understanding the depositional 
facies model. 

 
 
Figure 6 (a) Mounds prior seismic labeled data occurrence 
for the BVE reservoir zones; (b) Map of six seismic facies 
corresponding to the BVE100 zone by applying the VAE in 
real input data; (c) Map of six seismic facies corresponding 
to the BVE100 zone by applying the VAE considering 
pseudo mounds expanded images. 
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Figure 7 (a) Mounds pseudo reconstructed images X’; (b) 
Mounds pseudo deep codes Z’. 
 
The seismic facies map obtained with the VAE-BGMM 
expanded methodology showed good correspondence 
with the information from the impedance cube P (Figure 8), 
which, in turn, had the curves of the ten wells drilled in the 
field as input.  
One possible interpretation for the seismic facies map is 
that the shades of purple are associated with regions of 
better permo-porosity, attributed to mound features or 
reworked facies.  These deposits are associated with (1) 
Mounds deposited in high energy environment with 
chemical precipitation and growth of the sedimentary 
section, with a predominance of shrubs/stromatolites and 
reworked facies of moderate to high energy (intraclasts 
grainstone/rudstone); (2) Shallow Plains associated with 
structural highs with higher proportions of reworked facies 
of moderate to high energy (intraclasts 
grainstones/rudstones) and development of shrub 
fascicular crusts or shrubs/stromatolites (ETR), and (3) 
Coast subenvironment with a predominance of facies with 
good permo-porous characteristics, shrubs/stromatolites 
and reworked (intraclasts grainstones/packstones), 
interspersed with spherulitic levels (Figure 8). Furthermore, 
the orange and yellow colors were related to low energy 
environments, where spherulites and laminites would 
predominate, exhibiting less permo-porous quality; these 
attributed to the (4) Sublittoral. Finally, the shades of green 
evidence a degradation of the reservoir, with a 
predominance of laminated facies of low energy, 
constituting the non-reservoir rocks of the (5) Protected 
Environment or of (6) Deep Lake predominantly. 
Based on the seismic facies map, interpretation of the 
pattern of reflectors, and the extrapolation from the wells, 
the reservoir geological model was subdivided into those 
detailed depositional subenvironment (Figure 8e). 
 
 

 

Figure 8 (a) Map of six seismic facies corresponding to the 
BVE100 zone by applying the VAE considering pseudo 
mounds expanded images; (b) Mean acoustic impedance 
map for the BVE100 range; (c) Structural top map of the 
reservoir; (d) Amplitude volume sections with 
subenvironments defined for BVE; (e) Structural top map 
of the reservoir, with the polygons of subenvironments 
mapped to this stratigraphic interval. Dashed lines 
correspond to the location of the sections shown in d. All 
maps are superimposed on the similarity attribute. 

 

Conclusions 
 
The VAE-BGMM methodology allowed us to generate new 
pseudo-labeled data by tackling the problem of latent 
space irregularity instead of a single point, ensuring a 
better organization of the latent space. Furthermore, the 
strategy overcomes unbalanced learning problems and 
allows apply supervised methodologies in weak 
supervised recognition areas. Comparing the seismic 
facies results with the information obtained with inversion 
attributes allowed greater detail, reliability, and robustness 
in the geophysical mapping. In addition, frequency data 
obtained by CWT Voices improved the recognition of 
small-scale structural and stratigraphic heterogeneities. 
Both results must constitute different scenarios that 
contribute to understanding the depositional facies model. 
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