
Multi-parameter least-squares reverse time migration using the viscoacoustic-wave
equation
1,2Nogueira P. and 1Porsani, M. (1UFBA/INCT-GP, 2SENAI CIMATEC)

Copyright 2023, SBGf - Sociedade Brasileira de Geofı́sica.

This paper was prepared for presentation during the 18th International Congress of the
Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 16-19 October 2023.

Contents of this paper were reviewed by the Technical Committee of the 18th

International Congress of the Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of the Brazilian Geophysical Society is prohibited.

Abstract

In viscoacoustic least-squares reverse time migration
(QLSRTM) methods, the Q factor is assumed to be known,
inverting only the velocity (v) parameter or v associated
variables such as squared slowness or bulk modulus.
However, the Q factor influences the amplitude and phase
of the seismic data, especially in basins containing gas
reservoirs or storing CO2. Therefore, the Q factor or
Q associated parameters must be considered a model
parameter to be inverted in the QLSRTM context. Thus,
we propose a multi-parameter viscoacoustic least-squares
reverse time migration (M-QLSRTM) procedure, which
obtains the inverse of bulk modulus (κ) and the Q
magnitude (τ) simultaneously. We derive and implement
the multi-parameter forward and adjoint pair Born operators
and the gradient formulas concerning κ and τ parameters.
Then, we apply these operators and gradients in least-
squares reverse time migration and, using our M-QLSRTM
approach, estimate κ, and τ reflectivity models parameters
with higher resolution when compared to conventional
migration images.

Introduction

Saturated fluid reservoirs cause strong P-wave attenuation,
which can degrade the resolution of seismic images. This
is because the earth is anelastic and therefore decreases
the amplitudes and distorts the phases of the seismic
waves (Aki & Richards, 1980). In cases where the
attenuation of the medium is too strong, neglecting it in
the migration procedure can result in blurred amplitudes
reflectors below the attenuating layers. P-wave attenuation
can be measured through a quality factor Q, which
accounts for the seismic wave’s energy dissipation and
phase distortion. Low Q-values imply more significant
dissipated wave energy per cycle, mainly when the seismic
pulse founds rocks as gas-sandstones and shales with very
low-quality factors (Q ≈ 15−20).

The first studies to restore the energy dissipated and repair
waveform distortion were performed in the data domain
using the Q filtering approach (Bickel & Natarajan, 1985;
Hargreaves & Calvert, 1991). However, these data domain
approaches fail to effectively correct the attenuation effects
because the dissipation and dispersion phenomena occur

during the wave propagation. Therefore approaches based
on wave propagation are the most adequate and effective
to compensate for the Q effects.

Mu et al. (2021) developed a viscoacoustic wave equation
in the time domain to simulate wave propagation in
anelastic media. They proposed a new viscoacoustic
wave equation inserting the complex-valued phase velocity
derived from the Kjartansson attenuation model in the
frequency-wavenumber domain in the acoustic wave
equation. The proposed equation has one second-order
temporal derivative and two spatial variable-order fractional
Laplacian operators describing the pulse distortion and
amplitude dissipation effects. The results indicate that
their viscoacoustic equation is more accurate than the
traditional fractional viscoacoustic wave equation that
describes constant-Q attenuation.

In the viscoacoustic least-squares reverse time migration
(QLSRTM), the pioneering work is from Dutta & Schuster
(2014). Thus, to correct the waveform distortion,
Dutta & Schuster (2014) implemented, based on the
SLS mechanical model, a linearized Born viscoacoustic
modeling operator. They also implemented the backward
propagation based on the adjoint method using an elegant
matrix formalism and consequently obtained the gradient
formula concerning the bulk modulus parameter. Using
that, they built a QLSRTM inversion scheme, showing that
considering the attenuation phenomena in their inversion
procedures, they produced images with better-balanced
amplitudes and higher resolution below the attenuating
layers. Yang & Zhu (2019) propose a complex-valued
QLSRTM. They insert the complex-valued velocity in the
acoustic wave equation. Using a second-order polynomial
to approximate the dispersion term and a pseudo-
differential operator to rewrite the dissipation term, they
derive a complex-valued viscoacoustic equation. Based
on this equation, they derive the forward and adjoint
operators and implement the QLSRTM algorithm with total
variation regularization to optimize the scheme and use the
Hessian diagonal as a preconditioner to accelerate method
convergence.

The previously mentioned works performed a single-
parameter QLSRTM approach, considering that only a
single parameter is responsible for the reflectivity model.
Usually, the considered parameter is the v model or v
associated models, such as bulk modulus and squared
slowness. However, depending on the subsurface
surveyed, the seismic data can contain strong viscous,
elastic, and anisotropic effects. Thus, a multi-parameter
QLSRTM approach that considers both v and Q associated
perturbation as reflectivity models δm (i.e., the seismic
images) is crucial in the inversion scheme, mainly when
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the physical medium is very attenuating. Thus, we
propose a multi-parameter QLSRTM (M-QLSRTM) seismic
inversion approach, where we perturb the inverse of the
bulk modulus and the Q magnitude, both directly related
to the velocity and Q factor, respectively. We highlight
the importance of considering the Q factor in the seismic
inversion procedure, especially in a strongly attenuating.

Non-linear viscoacoustic modeling operator

In a viscoacoustic media, the calculated wavefield can
be obtained from the relationship between the pressure
wavefield and the particle velocity considering a single SLS
(Robertsson et al., 1994):
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where τ = τε/τσ −1 represents the magnitude of Q. τε and
τσ are, respectively, the relaxation time stress and strain,
given by:
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being K = K(x) is the bulk modulus at the position x, b =
b(x) is the buoyancy, p is the pressure wavefield, v = v(x, t)
is the particle velocity vector, and H(t) is the Heaviside
function. The symbol * represents a time convolution in
the equation ((1)).
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substituting (2) in (4)

κ
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where κ is the inverse of the bulk modulus, the equation
system (5) describes the non-linear viscoacoustic forward
equation. However, equation (5) is computationally
expensive to solve numerically due to the convolution
term existence. Robertsson et al. (1994) simplifies
the convolution term by introducing a memory variable,
resulting in a computationally solvable equation system.
Thus, the non-linear forward modeling becomes

κ
∂ 2 p
∂ t2 −∇ ·b∇p− τ∇ ·b∇p+ rp = f ,

∂ rp

∂ t
=

τ

τσ

∇ ·b∇p− 1
τσ

rp,

(6)

where rp is a memory variable responsible for the wavefield
attenuation. The equation system (6) describes the
non-linear forward modeling for a viscoacoustic medium
Carcione et al., 1988; Blanch et al., 1995; Bai et al., 2014.

We use the vector w = [p rp]
T to denote wavefield. The

seismic data are sampled at receiver positions as d = Rw
with d = [d 0]T . In this work, we use equation (5) to
derive the multi-parameter Born modeling equation.

Multi-parameter linearized viscoacoustic modeling
operator

According to the perturbation theory, the physical
parameters can be expressed as the sum of the
background and perturbed parameters (Dutta & Schuster,
2014): 

b = b0 +δb,
κ = κ0 +δκ,

τσ = τσ0 +δτσ ,

τ = τ0 +δτ.

(7)

where b0, K0, τσ0 , and τ0 are background medium
parameters and δb, δK, δτσ and δτ denotes the parameter
perturbations. Here, we assume that the medium
parameters b and τσ are accurate, that is, δb = 0 and
δτσ = 0. Unlike the single-parameter inversion approaches
(Dutta & Schuster, 2014; Witte et al., 2019; Mu et al., 2020),
we implement a multi-parameter inversion approach. We
consider that the subsurface reflectivity model represents
the perturbations of the inverse of bulk modulus (δκ)
and magnitude of quality factor (δτ). Consequently,
a perturbation in these parameters causes a wavefield
perturbation. Thus, the pressure wavefield p(x, t) can be
linearized as

p(x, t) = p0(x, t)+δ p(x, t), (8)

where p0(x, t) and δ p(x, t) are the background and
perturbed wavefields, respectively. Then, the perturbed
wavefield δ p can be written as

κ0
∂ 2δ p
∂ t2 −∇ ·b0∇δ p− τ0∇ ·b0∇δ p+δ r =−δκ

∂ 2 p0

∂ t2 +

δτ∇ ·b0∇p0 −δτ
r0

τ0
,

∂δ r
∂ t

=
τ0

τσ0

∇ ·b0∇δ p− δ r
τσ0

.

(9)
The multi-parameter linearized viscoacoustic modeling
operator can be expressed in abstract form as

δd = Lδm (10)

where δd is data perturbation, δm = [δκ δτ]T

denotes model perturbation and operator L indicates the
viscoacoustic Born approximation operator.

Multi-parameter linearized adjoint operator and
gradient formulas in viscoacoustic media

The migration operator is the adjoint of the Born modeling
operator that maps the seismic reflection data δd to the
perturbation model δm. Thus, considering the background
medium parameters, the adjoint equations for equation (6)
can be obtained through the adjoint-state method and is
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given by (Blanch & Symes, 1995; Dutta & Schuster, 2014)
and is given by

κ0
∂ 2q
∂ t2 −∇ ·b0∇(1+ τ0)q−∇ ·b0∇

τ0

τσ0

rq = ∆d,

∂ rq

∂ t
−

rq
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−q = 0.
(11)

where q and rq are the adjoint-state variable of the state
variables p and rp, respectively. ∆d is the pressure data
residual between the calculated and the observed data.

The perturbation model δm = [δκ δτ]T , which
corresponds to the gradient of the M-QLSRTM, is
given by

δκ =
∂J

∂κ0
=−
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and
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Theory of M-QLSRTM

Based on linear inversion theory, M-QLSRTM aims to
estimate the optimal subsurface reflectivity image (Dutta &
Schuster, 2014). Thus, the misfit function can be written as

J(m) =
1
2
||δd−dobs||22 =

1
2
||Lδm−dobs||22, (14)

where δd and dobs are the Born modeled data and the
observed data, respectively. L is the Born modeling
operator and δm = [δκ δτ]T is the reflectivity model. So,
δm can be estimated by the conjugated-gradient method
(CGM). The implementation for CGM is as follows:

gk+1 = LT [Lδmk −dobs],

β
k+1 =

[gk+1]T gk+1

[gk]T [gk]
,

zk+1 = gk+1 +β
k+1zk, (15)

α
k+1 =

[zk+1]T [gk+1]

[Lzk+1]T [Lzk+1]
,

δmk+1 = δmk −α
k+1zk+1,

where k represents the iteration index, gk and β k are
the gradient and the step-length, zk and αk are the
conjugate gradient direction and the corresponding step-
length, T represents the conjugate transpose of a matrix.
According to M-QLSRTM with CGM shown, we use an M-
QLSRTM, which includes five steps. The first step is to
obtain the calculated data through multi-parameter Born
modeling, then compute the residual data by subtracting
the calculated data from observed data. Thus, we calculate
the objective function using data residual as the adjoint
source for backpropagation. The third step calculates the
conjugate gradient direction and the corresponding step
length using the gradient computed in the second step.
The fourth step updates the current reflectivity model using
the previously computed conjugate gradient direction. This
procedure occurs until reaching a pre-established number
of iterations.

Numerical experiments

We demonstrate the feasibility of M-QLSRTM with
synthetic data. Numerical examples are for Overthrust
model. We generate the observed data in numerical
examples with equation (9). We note that initial reflectivity
images concerning κ and τ parameters refer to the first
iteration of M-QLSRTM. We test the sensitivity of the
proposed M-QLSRTM considering different errors in the τ

model. Finally, to show the robustness of the proposed M-
QLSRTM, we also test the M-QLSRTM for different noise
levels in observed data.

Overthrust model

The M-QLSRTM approach is now tested on the land
overthrust model. Figure 1 a and b show the true velocity
and Q models used to calculate the δκ (Figure 1 c) and
δτ (Figure 1 d) models reflectivity, and from it to generate
the observed data in which contains 400 shots excited
with a 50 m shot interval at a depth of 30 m. Each shot is
recorded with 800 receivers and a 25 m receiver interval
with a recording time of 4 s.
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Figure 1 – Overthrust model: True velocity model (a), True
Q model (b), True δκ reflectivity model (c) and True δτ

reflectivity model (d).

Using the true reflectivities models (Figure 1c) and δτ

(Figure 1d), we generated the observed data and applied
the M-QLSRTM. First, we obtain the initials δκ and δτ

(Figures 2a and c) reflectivities images, which correspond
to the first iteration of M-QLSRTM procedure. So, at the
end of 20 iterations, we get the final reflectivities images
concerning the δκ (Figure 2b) and δτ (Figure 2d). These
final images contain higher resolution when compared
to initial images (Figures 1a and c ). The M-QLSRTM
inversion scheme highly reduced the low-frequency noise
and improved the delineation of reflectors for both δκ and
δτ parameters. Figure 4a shows the decrease of the
objective function for each iteration.

We compared vertical profiles for M-QLSRTM results. In
Figure 3, we can analyze, on the left and the right, a
comparison between the profiles for the reflectivities δκ

and δτ, respectively. On both sides, the green curve is
closer to the red curve than the blue curve. This result
means that the inverted reflectivity models were successful
in the M-QLSRTM scheme, evidencing the effectiveness of
the implemented inverse procedure.
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The convergence curve to M-QLSRTM is plotted in Figure
4, showing that the convergence of M-QLSRTM occurs.

(a) (b)

(c) (d)

Figure 2 – Overthrust: Reflectivity model for initial δκ (a),
M-QLSRTM δκ after 20 iterations (b), Initial δτ (c), M-
QLSRTM δτ after 20 iterations (d).
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Figure 3 – Vertical profiles at central position for Overthrust
experiment. Comparison for δκ reflectivity (left), and
comparison for δτ reflectivity (right).
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Figure 4 – Convergence curve for M-QLSRTM for
Overthrust experiment.

Sensitivity of M-QLSRTM to random seismic noise

We now test the sensitivity of the proposed M-LSRTM to
random noise. The random noise was applied from the

signal-to-noise ratio, expressed in decibels (dB), with the
following equation:

S/N = 10log10

(
As/An

)
, (16)

where As= ||d⃗s||2 is the signal energy and An= ||d⃗s− d⃗s+n||2
is the noise energy (Wilson et al., 1997). d⃗s is the signal of
the observed data, d⃗s+n is the signal of the noisy observed
data.
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Figure 5 – Central shot of the Overthrust data with different
S/Ns.
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Figure 6 – M-QLSRTM for Overthrust data with S/N=30 dB.
Reflectivity model for initial δκ (a), final δκ (b), initial δτ (c)
and final δτ (d).
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Figure 7 – M-QLSRTM for Overthrust data with S/N=14 dB.
Reflectivity model for initial δκ (a), final δκ (b), initial δτ (c)
and final δτ (d).

Figure 5 show the central shot of Overthrust data, with
different signal-to-noise ratios (S/Ns). From these noisy
data, we run M-QLSRTM. Figures 6, 7, 8 show the
M-QLSRTM inverted models for the experiments using
Overthrust data considering different noise levels. Figure
9 show for Overthrust data, the convergence curve
considering the seismic data with different noise levels.
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(a) (b)

(c) (d)

Figure 8 – M-QLSRTM for Overthrust data with S/N=3 dB.
Reflectivity model for initial δκ (a), final δκ (b), initial δτ (c)
and final δτ (d).

The experimental results show that a higher S/N of the
data can obtain a better imaging result. The noise intensity
in the imaging results increases with the decreasing S/N
of the data. Analyzing Figure 9, we conclude that the M-
QLSRTM is always robust and convergent under different
S/N.
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Figure 9 – Convergence curves for M-QLSRTM with
different S/Ns for Overthrust data.

Conclusions

We present a time-domain M-QLSRTM method that uses
the multi-parameter viscoacoustic wave equation to jointly
estimate the inverse of bulk modulus and Q magnitude
and consequently to compensate for the distortion in
amplitudes and phases of seismic waves propagating in
attenuative layers. Numerical results on synthetic data
validate our proposed approach, showing that the multi-
parameter linearized viscoacoustic wave equation and
its adjoint equations used in the M-QLSRTM scheme
can compensate for the loss attenuation during the
iterations. In the results, our M-QLSRTM procedure
produces δκ and δτ reflectivities images with better-
balanced amplitude and accurately positioned reflectors
compared with its respective initials reflectivities images,
even with the seismic data generated in the presence of
noise, evidencing the robustness of the M-QLSRTM.
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