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Abstract

When using OBN for seismic surveys, data recovery
or transmission has to deal with large data volume
and inefficient transmission channels, thus sustaining
the development of compression schemes to reduce the
storage amount and/or the information to be transmitted.
In this work, we propose a near-lossless alternative
for seismic data in OBN-type acquisition geometries,
that does not require transmitted residues for signal
recovery, as is normally carried out with classic predictive
coding alternatives. Our proposal involves sorting a
selected data chunk by their amplitude values and
segmenting the signal into three partitions: negative,
zeroed, and positive amplitudes. A non-uniform subset
of samples from the negative and positive partitions
are then selected to approximate the overall amplitude
shape of the well-behaved monotonically increasing sorted
signal, resulting in a significantly reduced number of
data floating-points to be compressed. The sample
selection process is determined by their corresponding
positions with a stretching transform of Chebyshev-Lobatto
points, which also allows for user-controlled clustering
at a desired range of amplitudes or a varying recovery
precision with fixed compression rate. Decompression is
performed through interpolation, which introduces a type
of relative error (or adaptive precision) along the signal,
standing as a small percentage of the local amplitude
values at places with reduced number of selected
samples. The proposed method is found to achieve a
compression ratio around 1.7, with a computationally low-
cost compression/decompression alternative, displaying
an R-squared (interpolated) value very close to unity.

Introduction

Predictive coding is a technique used in various fields
to reduce the amount of data that needs to be stored
or transmitted while preserving the most important
information of the signal (Makhoul, 1975; Fout and
Ma, 2012). Particularly in the context of seismic
data compression, the application of predictive coding
was a first-choice for the development of lossless-type
compression algorithms to reduce the amount of data
required to accurately represent a seismic signal (Stearns
et al., 1993; McCoy et al., 1994; Stearns, 1995; Nijim
et al., 1996; Mandyam et al., 1996), also considering ocean

bottom sensors (Bordley, 1983). The underlying principle of
such predictive coding approach is to use some previously
known information of the signal to predict other sampled
values. Specifically, classical predictive coding algorithms
adopted in seismic data compression considered a causal-
type framework, i. e., that previous samples of the seismic
waveform can be used to predict the next samples. At a
given discrete time tn the difference between the predicted
value and the actual value is then encoded, rather than the
signal’s value at tn itself. By encoding the difference, along
with some model parameters, the overall amount of data
that needs to be stored and/or transmitted can be reduced.
Usually, these residues are directed to a second stage,
related to entropic coding (Stearns et al., 1993; Savazzi
and Spagnolini, 2011; Payani et al., 2018), but this issue
will not be discussed here, as we will restrict our attention
strictly to the first stage, only related to prediction.

Typical least complex predictors include simply using the
difference of previous sample values (Ahern et al., 2012),
or a linear prediction with fixed coefficients determined a
priori (McCoy et al., 1994; Nijim et al., 1996). Increased
performance is expected by selecting optimized prediction
coefficients, obtained for separated sample blocks (Stearns
et al., 1993; Nijim et al., 2000). In some limiting cases,
however, with more rigorous requirements regarding the
computation power (say in deployed devices adopted in
real-time sensor networks), these optimal approaches may
not be applicable, and adaptive alternatives are preferred
(Kiely et al., 2010). In this case, the prediction algorithm
can adjust itself based on the characteristics of the
signal being compressed, featuring lower computational
complexity than fixed coefficient approaches (Magotra
et al., 1995; Mandyam et al., 1996; Kiely et al., 2010).
More recently, machine learning techniques have been
applied to seismic data compression to improve the
accuracy and efficiency of predictive coding methods
(Payani et al., 2018; Nuha et al., 2019; Helal et al.,
2021). However these are mostly focused on lossy-type of
compression schemes. A lossless approach was proposed
by Payani et al. (2019), with a two-dimensional Recurrent
Neural Networks (RNN), with several workarounds to
reduce the increased computational complexity of their
proposal. Unfortunately, the obtained results are only
briefly presented and discussed.

There is a somewhat potential trend to extend lossless
approaches to a near-lossless compression option (i.e.,
lossy compression with user-defined absolute and/or
relative error limits in the reconstructed signal), allowing
substantially smaller compressed file sizes when a small
amount of distortion can be tolerated (Campobello et al.,
2021; Hernández-Cabronero et al., 2021; Lindstrom,
2014). Therefore, the goal of predictive coding is to achieve
efficient data compression while preserving a considerable
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amount of the most important information in the signal. In
the case of OBN data, this refers to the information that
allows detection of important features at specific parts of a
seismic signal, which are related to changes in subsurface
geology.

In this work, we propose a near-lossless alternative for
OBN seismic data compression, which considers data
block-sorting and non-uniform selection of points for later
signal decompression, that does not requires the typical
transmission of floating point residues for proper signal
recovery, but instead mostly integer values (indexes) that
refers to their locations along the signal. The paper is
organized as follows. First we describe the mathematical
basis of the suggested approach. We then present the
obtained results for synthetic (active source) and a realistic
(passive source) OBN-type data. Lastly, we present the
main conclusions.

Near-lossless compression through block-sorting and
decimation

Here we describe the approach based on the data
sorting and non-uniform selection of points (that for
now on we term as decimation) for the compression
phase, which is later recovered through interpolation and
correct rearrangement of the signal amplitudes. In the
following, we develop some quantitative notion for the
minimal required information needed to recover the signal,
compared with its original size.

Our approach is as follows: given N samples of the
waveform seismic data, we can sort this samples by
their increasing amplitudes, forming N− + N0 + N+ = N
samples, which stands for N− ordered values up to zero
amplitude, N0 zeros, and N+ ordered samples with positive
amplitudes. Additionally, the same amount of I indexes
should be known, thus increasing the total N number of
samples by I− + I0 + I+ values necessary for the original
signal recovery. It worth noting, however, that while
there are N−+N0 +N+ values related to a monotonically
increasing amplitude (which are hoped to be considerable
easier to predict than the original waveform) in one hand,
on the other there are I−+ I0 + I+ indexes corresponding
to a somewhat random sequence of integers, that are
worst to compress but use less bits to be represented.
The potential of such measure, therefore, turns out to
depend on how good one is able to approximate two well-
behaved segments with a significantly smaller number of
floating points, while the sorted (integers) indexes must
be accounted. Thus, to be truly applicable for data
compression, the following inequality of sorted data volume
must hold:

sorted︷ ︸︸ ︷
|N−+N0 +N++ I−+ I0 + I+|<

original︷︸︸︷
|N| , (1)

which can be further simplified. By knowing the total
number of samples #N (a single floating point value, in this
case) and the I− and I+ indexes, there is no need to store
the I0 indexes. Also, we avoid storage of/retention of N0

zero amplitudes. So, to recover the signal

sorted︷ ︸︸ ︷
|#N +N−+N++ I−+ I+|<

original︷︸︸︷
|N| . (2)

Here we foresee a possibility to explore this inequality,
through non-uniform decimation at each monotonically
increasing N− and N+ segment, significantly reducing
the number of higher precision samples that should be
considered for further decompression of the original signal.

This is pursued herein by a stretching map of ε j
Chebyshev-Lobatto points (Trefethen, 2019; Boyd, 2001),

ε j = cos
(

jπ
NA,B −1

)
, j = 1,2, ...,NA,B −1; (3)

transforming the amplitude segment (N− or N+), onto the
Chebyshev interval −1 ≤ ε ≤ 1, where they are discretized
in less collocation points (NA or NB, respectively). For
the problem at hand, a suitable mapping function ε(r) is
considered to concentrate most collocation points within
a user-defined amplitude region (Lesshafft and Huerre,
2007), with the following two-parameter transformation

r(ε) = rc
1− ε

1− ε2 +2rc/rmax
, (4)

where approximately half of the points r j = r(ε j) are
placed in the interval 0 ≤ r ≤ rc, concentrated around
r = rc/2. Values of rc, from 0.025 → 0.1, and rmax = 1
have been considered in the calculated results presented
subsequently. This mapping provides an interesting
compression potential, with a user controlled error related
to the interpolation recovery. In other words, one can
fix the number of points to be used to approximate the
monotonically increasing positive and negative segments,
but distribute these differently, thus having distinct errors on
the decompression phase. The interpolation error may be
seen as some sort of relative error (or adaptive precision),
which displays a percentage of the local values found in
the original signal, being also bounded by their limiting
points in each segment. A way to overcome this issue, if
a more strict criteria for the error is required, is to increase
the number of samples around the regions of maximum
absolute interpolation error. However, one must properly
value this decision to carry on a fixed small error throughout
the entire signal. Is it necessary to ensure, say a 10−4

precision, in regions where amplitudes are varying at 105?

In any case, here we are left with a reduced number
of floating-points samples (and integer indexes) that are
necessary to represent the negative |NA + IA| ≪ |N−|, and
positive |NB + IB| ≪ |N+| segments, resulting in

sorted+decimated︷ ︸︸ ︷
|#N +NA +NB + IA + IB + I−+ I+| ≪

original︷︸︸︷
|N| . (5)

For the signal recovery, first the NA (NB) samples, with
their associated IA (IB) indexes, are interpolated along
the I− (I+) indexes, which are then relocated into their
original positions, in a vector of length N. So, here we
expect to obtain compression when the total of NA + NB
floating points, along with IA + IB + I− + I+ integers for
associated indexes, plus the knowledge of 1 floating point
number (#N), is found to be less then N floating points. It
also worth noting that sorting and interpolation, normally
present computational complexity of O(N) each, thus being
computationally fast. Here, compression is associated
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with O(N) for sorting, while decompression takes O(N) for
interpolation.

Results

Figure 1 presents two possible OBN scenarios for the
evaluation of this proposed method. In the first case,
pressure data of a synthetic simulation (active survey),
from a single OBN receiver is gathered into a single trace,
which is then sorted by their amplitude values, where
positive and negative segments are approximated with
a reduced selection of points. Reconstruction error is
then shown, along a single stacked data trace. For the
realistic OBN case, we consider the data from a passive
PRM (Permanent Reservoir Monitoring) system deployed
in 2012 at the Jubarte oil field (Goertz et al., 2015; Thedy
et al., 2015; Bulcão et al., 2019), with a fully fiber-optic
system deployed at 1300 meters water depth, with 712 four
component (4C) receivers. Here we exemplify the results
obtained for two components (25 traces of 15000 samples,
for pressure and one displacement-related component).

Table 1 and 2 shows some of the obtained results with
our proposal, after a final stage compression with Burrows-
Wheeler transform (bzip2), respectively for synthetic and
realistic OBN scenarios. Thus, for the synthetic case,
original data X directly compressed with state-of-the-art
WinRAR technology produces 2327 KB file size. For the
sorted file X∗, we found a great improvement on file size
reduction (768 KB). However the correct sample locations
must be also accounted for the signal recovery, adding
1459 KB. Lastly, with the presented proposal (BS+D),
|NA + IA +NB + IB + #N| returns a 5 KB file, |I−| a 630 KB
file , and |I+| a 750 KB file; which in total results in a file
with 60% of the original data size. The Compression Ratios
(CR), and their inverse, are presented for each case.

Table 1: Compression ratio of synthetic OBN data.

size (KB) CR 1/CR
X 2327 1.000 1.000

X∗ + indexes 2391 0.973 1.023
BS + D 1393 1.671 0.598

* sorted

In the realistic OBN-type situation, having a passive
source, original data of pressure (X1) and a displacement-
related (X2) component, directly compressed with WinRAR
technology produce 1386 KB and 1449 KB, respectively.
Again, the proposed method is found to approximately
reduce each file size to something close to 60% of the
original.

Table 2: Compression ratio of realistic OBN data.

size (KB) CR 1/CR
X1 1386 1.000 1.000

X∗
1 + index 1386 1.000 1.000

BS + D (X1) 825 1.680 0.595

X2 1449 1.000 1.000
X∗

2 + index 1472 0.984 1.015
BS + D (X2) 873 1.659 0.602
* sorted

A more detailed picture of the relative error behavior is

shown in Figure 2. A closer look on the synthetic data
case, for instance, exemplifies how the signal recovery
is able to properly display even small amplitude events,
such as those appearing right after the direct wave,
although some level of error is tolerated at higher amplitude
events. The same behavior is verified in the sample values
for 2 components in Jubarte passive data, although in
this mostly noisy case such values are more dispersed.
Maximum relative amplitude errors of these databases
are found to be, respectively, −0.0132, 0.0212 and 0.0377,
occurring at high amplitude regions.

Conclusion

In this work we have presented preliminary results of
an alternative approach for near-lossless compression
in OBN-type seismic data. The proposal potential is
closely related to the conversion of floating-point samples
to integer indexes, as the sorted amplitudes can be
significantly reduced by considering less number of data
points. This selection was here explored through a
two-parameter stretching map for Chebyshev-Lobatto grid
points. Future directions are hoped to provide a more
clear connection between the stretching function and the
recovery errors, potentially leading to a better choice of the
stretching parameters for an optimized compression, with
improved compression ratios.
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Figure 1: First row: (X) pressure results in a Common Receiver Gather (CRG) from the synthetic data, (X1) sample of obtained
pressure from Jubarte PRM pilot, and (X2) a sample of the displacement-related component. Second row: the stacked version
of each data displayed above, also showing the recovery error (red line). Third row: recovery error for each of the samples in
the stacked data. Forth row: signal sorted by its amplitude values, with red markers delimiting the zero amplitude segment.
The numbers of elements in N− and N+ segments are indicated. Fifth row: logarithmic scale for the amplitudes of each N−

and N+ segments, with NA and NB markers indicating the selected collocation points considered for later signal recovery. Here,
the number of points was fixed at 251 points, to all segments.

Figure 2: Original and recovered signals, with a detailed view of the relative error behavior of three randomly choosen parts of
the signal. Original signals are displayed with solid black lines, recovered signal as dotted green, and error as solid red.
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