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Abstract 

 
Optimizing the stacking weights of prestack volumes can 
improve the stacked image. However, existing optimal 
stacking methods either are not effective in the presence 
of event misalignments or require complex a-priori dip 
computations. Our correlation-based dip-guided optimal 
stacking overcomes these limitations by measuring the dip 
coherency of each prestack volume by computing the local 
correlation between filtered images of that individual 
gather. It can be efficiently implemented using simple 2D 
plane-wave destruction filters (PWD) and a sliding-window 
correlation. Our synthetic example shows that this method 
provides comparable or slightly better results than a dip-
guided method that pre-computes the dip of prestack 
volumes. 

 

Introduction 

 
Prestack volumes are image volumes sorted by shot 
patches, reflection angles/azimuths, vector offsets or other 
seismic attributes. Stacking the prestack volumes is an 
important step to improve the signal-to-noise ratio and the 
image quality of seismic data. The basic idea of optimal 
stacking is to optimize the stacking weights to emphasize 
the relevant structural information in prestack volumes 
while down weighting or removing noise or artifacts.  
  
Many optimal stacking methods are based on local 
correlation. Grion and Mazzotti (1998) compare weights 
estimated using cross-correlation and singular value 
decomposition and conclude that the former performs 
equally well to the latter but has reduced computational 
cost. Liu et al. (2009) use as stacking weights the local 
correlation coefficients between each trace in the prestack 
volumes and a reference trace from a conventional stacked 
image. Sanchis and Hanssen (2012) propose to improve 
the correlation results using preprocessed reference 
traces. Compton and Stork (2012) further improve the 
technique with more spatial information by incorporating a 
3D cube of prestack traces and reference traces when 
calculating local correlations. However, it is expected that 
local correlation does not perform well if events from 
different prestack volumes are not perfectly aligned due to 
velocity errors.  
 

Using an interpreted reference dip field to guide the 
stacking should theoretically mitigate this issue. Dip-
guided optimal stacking assigns more weight to prestack 
events with dips that better conform the interpreted 
reference 3D dip, while down-weighting or excluding 
events that do not. The reference dip field could come from 
a heavily pre-processed reference stack, interpreted 
horizons or other geological information. One drawback of 
existing dip-guided optimal stacking methods is that they 
either require difficult computations of dip fields from 
prestack volumes (Gu et al., 2016; Malave et al., 2017), or 
they require that the dip-guided stacking be limited to dip 
gathers (Hartman et al., 2015). 
 
We propose a method to perform dip-guided optimal 
stacking based on using correlations to measure dip 
coherency. It combines the merits of the local correlation 
and the guided-dip methods while avoiding their limitations. 
Our method measures dip coherency of a gather using 
local correlations between a set of dip-filtered versions of 
the gather itself. Despite its simplicity, this methodology 
has a solid theoretical basis that we will discuss in the next 
section.  

 

Method 

 
For convenience we here consider the case of a 2D image 
𝐼(𝑧, 𝑥). The simplest dip filter is the plane-wave destruction 

filter (PWD) (Claerbout, 1992; Fomel, 2002) 
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where 𝐼(𝑧, 𝑥) is a prestack image and tan( )  is the 

reference local slope as a function of local dip  . 

Examples of reference slope   and image I  are shown 

in Figure 1a and 1b, respectively. 
 
For convenience, we define 
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where PWDsin  is a normalized version of PWD and 

PWDcos  represents the application of PWD along a 

direction perpendicular to the reference dip. The right-hand 
sides of equations (2) and (3) are derived assuming a local 

reflection plane with dip I  in I , and I     . In
 is a  
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directional derivative taken in the direction normal to this 
local reflection plane. 
 
More intuitive explanations for the modified 𝑃𝑊𝐷𝑠𝑖𝑛 and 

𝑃𝑊𝐷𝑐𝑜𝑠 are shown in Figure 1c and 1d, respectively. We 

can observe that 𝑃𝑊𝐷𝑠𝑖𝑛 kills events that conform to the 

reference dip, whereas 𝑃𝑊𝐷𝑐𝑜𝑠 kills those orthogonal to it. 

 
We use these PWD filtered images to compute the 
stacking weights. We do not dip filter any events in the final 
optimized stacked image. The following section describes 
how we use a local correlation measure to extract the dip 
coherency from the PWD filtered images. 
 

 

Figure 1: An example of (a) reference slope  , (b) image I , 

(c) PWDsin filtered image, (d) PWDcos  filtered image. 

 

Workflow 
 

In 3D, we use reference local slopes/dips 𝜎𝑥 = tan𝜃𝑥 and 

𝜎𝑦 = tan 𝜃𝑦 along the crossline and inline directions, 

respectively, to guide the stacking. There are three main 
steps for measuring the dip coherency using our method: 
 

1) For each individual 3D image I , compute four 3D 
PWD filtered images: 
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The PWD filtered images in equation (4) are obtained by 
applying our 2D modified PWDs to all the 2D planes along 
crossline and inline directions, respectively. 
 

2) Apply the local correlation operator , , to 

combinations of PWD filtered images in equation (4), 
namely 
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Where 𝐶(𝑧, 𝑦, 𝑥) = 〈𝐼1(𝑧, 𝑦, 𝑥), 𝐼2(𝑧, 𝑦, 𝑥)〉 and its 

discretized version is  
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Here, ( , , )x y zf j j j is the weighting function for 3D window 

summation and , ,x y zw w w  are the windows half-lengths in 

number of samples. If the weight is constant, local 
correlation is implemented using sliding-window 
correlation (Liu et al., 2009; Sanchis and Hanssen, 2012). 
 

3) Define
3D as the angle between the normal 

directions of a local reflection plane in the 3D image 𝐼 

and the local plane defined by the reference crossline 
and inline dips. We compute cos(∆𝜃3𝐷) at every 

sample following the formula. 
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Where ,X Y  and Z are linear combinations of the four local 

correlations from equation (6): 
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 (8) 

 
Appendix B shows the derivation of equations (4) to (8). 
 
The above three steps are applied individually to each 

prestack gather to estimate dip coherency cos2(∆𝜃3𝐷), 

which has a value between 0 and 1. A value of 1 indicates 
that the prestack volume sample completely conforms to 
the reference dip, while a value of 0 indicates that the 
sample completely disagrees with the reference dip. This 
dip coherency is used as stacking weight after 
thresholding. 

Examples 

 
We apply this method to RTM images generated from the 
3D SEAM model. The simulated acquisition is off-end 
streamer. A total of 57 sail line data have been simulated 
using a sparse shot grid with 150m inline and 600m 
crossline shot-spacing. The simulation uses 20 streamer 
cables spaced 60m apart with a receiver spacing of 30m. 
The streamers are symmetric around the shot line with a 
maximum inline offset of ± 570m. The simulated acquisition 
direction is E-W with a maximum positive crossline offset 
of 8.2km.  
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2
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Figure 2: Aperture volume 
decomposition. The inner sector 
1 has a radius of 1km. The 8 
outer sectors have azimuth of 
45, 135, 225, 315 degrees with 
sectors 2,3,4,5 extending 
between 1km and 2.6km. The 
remaining sectors extend 
beyond 2.6km to the rest of the 
aperture domain. 

2
1
4
35

6

7

8

9



LORENZO CASASANTA AND SERGIO GRION 
 ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Eighteenth International Congress of the Brazilian Geophysical Society 

3 

Each RTM shot image uses an operator with 8km inline 
aperture and 6km crossline aperture. The migrated shots 
are decomposed into nine partitions as a function of the 
aperture offset and azimuth as shown in the graph in 
Figure 2. Each numbered sector in Figure 2 corresponds 
to a pre-stack volume in Figure 3 
The conventional straight stack image in Figures 4a 
(crossline slice) and 5a (depth slice) shows that the subsalt 
image pointed by the yellow arrow is much distorted.  

 
 

Figure 3: Eight of the nine 3D RTM prestack volumes 
decomposed based on offset and azimuth aperture as described 
in Figure 2. With an E-W acquisition direction we expect little or no 
image from large negative crossline offsets. This is confirmed by 
inspecting sector 9, which contains no useful structural 
information, and therefore it is not shown here. 

 
We compare our correlation-based dip-guided optimal 
stacking method to a conventional dip- consistency method 
which requires a-priori computation of the prestack dip. For 

convenience, we use a reference dip field directly 
computed from the true reflectivity model. Both methods 
significantly improve the final stack image as shown in 
Figures 4 and 5 for crossline and depth slices, respectively. 
Our method provides comparable subsalt image quality to 
the conventional method at the yellow arrow location. In 
addition, our method removes or attenuates strong false 
coherent events at the blue arrow locations, which do not 
appear in the true model. Our method also improves the 
continuity at the red arrow location, while the conventional 
method makes it worse.  
For validation, in Figure 6 we compare coherency 

cos2(∆𝜃3𝐷) maps at the location of the 2D slices in Figure 

1 using conventional dip-consistency methodology and our 
novel dip-coherency approach. Without computing the dip 
field of the prestack volume, our method can provide 
comparable measurement of dip coherency compared to 
more traditional approaches.  

 

Figure 4: Crossline slice of (a) straight stack image, (b) 
conventional and (c) correlatino-based dip-guided optimal 
stack. 
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Conclusions 

 
We introduce the correlation-based dip-guided optimal 
stacking method. The method does not require the 
computation of prestack dip fields. It also assesses 
coherency within individual gathers, therefore overcoming 
the local correlation issue with event misalignments in the 
gathers due to velocity errors. Our synthetic example 
shows that even when applied using simple 2D PWDs and 
sliding window correlations, our method provides 
comparable or slightly improved results with respect to 
conventional dip-guided methods. 
 
Acknowledgments 
 

The authors are in debt to Zongcai Feng, who formulated 
the dip coherency measure and implemented it as a by-
product of conventional PWD wave killers. 
 

References 

 
Claerbout, J.F. and Abma, R., 1992. Earth soundings 
analysis: Processing versus inversion (Vol. 6). London: 
Blackwell Scientific Publications. 
 
Compton, S. and Stork, C., 2012, November. 3D nonlinear 
stack enhancement: Correlation based stacking. In 2012 
SEG Annual Meeting. OnePetro. 
 
Fomel, S., 2002. Applications of plane-wave destruction 
filters. Geophysics, 67(6), pp.1946-1960. 
 
Grion, S., Mazzotti, A., 1998, Stacking weights 
determination by means of SVD and cross-correlation. In 
SEG Technical Program Expanded Abstracts 1998 (pp. 
1135-1138). Society of Exploration Geophysicists. 
 
Gu, R., Zdraveva, O., Hegazy, M. and Buzzell, S., 2016. 
Interpretation-guided image enhancement using reverse-
time-migration vector-image partitions. In SEG Technical 
Program Expanded Abstracts 2016 (pp. 4341-4345). 
Society of Exploration Geophysicists. 
 
Hartman, K., Chakraborty, S., Nolte, B., Gou, W., Sun, Q. 
and Chazalnoel, N., 2015. Understanding and improving 
the subsalt image at Thunder Horse, Gulf of Mexico. In 
SEG Technical Program Expanded Abstracts 2015 (pp. 
4028-4032). Society of Exploration Geophysicists. 
 
Liu, G., Fomel, S., Jin, L. and Chen, X., 2009. Stacking 
seismic data using local correlation. Geophysics, 74(3), pp. 
V43-V48. 
 
Malave, K., Hegazy, M., Hydal, S., Jones, L. and Tu, C., 
2017. Enhanced imaging using targeted reprocessing: A 
Gulf of Mexico case study. In SEG Technical Program 
Expanded Abstracts 2017 (pp. 5756-5760). Society of 
Exploration Geophysicists. 
 
Sanchis, C. and Hanssen, A., 2011. Enhanced local 
correlation stacking method. Geophysics, 76(3), pp. V33-
V45. 
 

 

Figure 5: Depth slice of (a) a stacked image, (b) the 
corresponding conventional and (c) correlatio-based dip-
guided optimal stack. 
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Figure 6: Dip coherency using (a) conventional and (b) 
correlation-based dip-guided method 

 
Appendix A 

 

Following the notation introduced in Figure 7, we define 
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Substituting equation (A1) and tan( )    into equations 

(2) and (3) yields 
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and 
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Figure 7: Notation of local dip    and normal direction n  of a 

local reflection plane in image ( , )I x z .  

 

Appendix B 
 

We denote the 3D normal direction of reference plane as 

 x y zn n nn . According to the definition of crossline 

and inline dips 𝜎𝑥 and 𝜎𝑦, we have 

    0 1 0 and 0 1 0x y    n n  (B1) 

Solving for n which gives 
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where 𝑆 = √1 + 𝜎𝑥
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2 . For the image 𝐼, we denote its 

local slopes as 𝜎𝑥
′ = tan(𝜃𝑥

′ ) and 𝜎𝑦
′ = tan(𝜃𝑦

′ ) along the 

crossline and inline directions, respectively. Its normal 
direction is  
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where 𝑆′ = √1 + (𝜎𝑥
′)2 + (𝜎𝑦
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2

. Thus cos(∆𝜃3𝐷) can be 

computed as  
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Using the identity 

 
cos cos( )

cos sin
cos cos

x x x
x x x

x x

  
  

 

  
      ( 15) 

we define 
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Similarly, we also define  
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Finally, equation B4 reduces to 
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Comparing equations 7 and B10, we note that  
 

 , , , , ,X A B Y B C Z A D    ( 19) 

 
The difference between equations 7 and B8 is that 
equation B8 first computes the linear combinations of PWD 
filtered images followed by local correlations, while 
equation 7 computes local correlations followed by linear 
combinations. For reason of convenience our 
implementation is based on equation B8. 
 


