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 Abstract 

 Deep-learning  (DL)  techniques  are  a  new  frontier  for 
 velocity  model  building  since  they  can  help  alleviate  the 
 dependency  on  human  curation,  computational  time,  and 
 inversion  issues.  The  use  of  a  neural  network  opens  the 
 possibility  of  combining  data  from  different  sources  which 
 represent  different  physical  quantities  in  the  same  flow.  In 
 this  work,  we  analyzed  the  effect  of  including  well-log 
 velocity  information  on  a  supervised  deep-learning 
 velocity  model-building  method.  The  method  chosen  was 
 Deep-tomography  (DT),  which  in  its  original 
 implementation  uses  as  input  for  a  U-Net  the  subsurface 
 offset  panels  migrated  with  an  input  model.  The  U-Net  is 
 trained  in  a  supervised  way  to  generate  velocity  updates 
 which  improve  the  initial  model  used  to  migrate  the 
 subsurface  offsets  panels.  The  use  of  input  data  in  the 
 image  domain  easily  enables  us  to  combine  well 
 information  as  a  sparse  image,  with  non-zero  information 
 just  in  the  well  positions.  This  image  is  then  used  as  an 
 extra  channel  in  the  input  image  for  the  U-Net.  The 
 preliminary  results,  for  the  last  iteration  of  DT,  shows  that 
 the  inclusion  of  the  well-log  information  improves  the  data 
 fit  and  increases  the  structural  similarity,  enhancing  the 
 layer's contrasts. 

 Introduction 

 Velocity  model-building  flows  based  on  DL  techniques 
 have  been  present  in  many  recent  studies  [1].  In 
 supervised  learning  tasks,  some  approaches  investigated 
 the  ability  of  the  DL  flow  to  completely  recover  the 
 velocity  model  from  the  seismic  shots  [2].  In  this  case,  the 
 shots  are  the  input  for  the  neural  network,  and  the 
 velocity  model  which  generated  the  shots  is  the  desired 
 output,  used  during  the  training  phase.  Such  approaches 
 eliminate  the  iterative  nature  of  conventional  inversion 

 tools  (e.g.  Tomography  and  Full-Waveform  Inversion), 
 however  since  they  are  a  complex  data  transformation, 
 from  shots  to  model,  they  present  some  generalization 
 issues,  requiring  a  high  similarity  between  the  training 
 data,  and  the  data  over  which  the  method  will  be  applied. 
 Besides,  the  use  of  raw  shot  data  imposes  some 
 additional  questions,  particularly  when  considering  the 
 data  size  of  the  3D  acquisition,  that  are  much  large  than 
 the modern GPU memories can handle. 

 Some  recent  works  propose  migrating  the  seismic  shots 
 using  a  constant  velocity  model  to  predict  the  complete 
 velocity  model  [3].  Another  similar  approach  is  to  update 
 iteratively  an  initial  model  using  DL  tools  [4].  Due  to  the 
 iterative  nature  of  model  prediction,  the  process  was 
 called  Deep-Tomography  (DT)  and  is  able  to  predict 
 structurally complex models. 

 Of  important  aspect  of  DL  is  its  ability  to  combine 
 information  from  different  sources,  conciliating  different 
 amplitudes  ranges  and  densities  of  representation.  One 
 important  source  of  information  about  seismic  velocity 
 comes  from  the  sonic  well-log.  In  practical  terms,  after 
 some  processing,  it  is  possible  to  obtain  a  localized 
 high-resolution  velocity  model  from  the  sonic  well-log.  Log 
 information  is  sparse  and  hard  to  use  in  conventional 
 inversion,  one  possibility  is  to  use  it  indirectly  as  a 
 regularizer  [5].  However,  for  deep-learning,  sparsity  is  not 
 an  issue,  and  the  well-log  information  can  be  used  as  an 
 extra  channel  for  training,  consisting  of  a  panel  entirely 
 equal  to  zero  unless  the  positions  where  there  the  sonic 
 log  info  is  available.  The  use  of  well  logs  as  an  extra 
 channel  of  a  neural  network  was  previously  investigated 
 to  enhance  the  resolution  of  velocity  models  generated 
 using a low-frequency FWI [6]. 

 In  this  work,  we  combined  the  idea  of  using  the  sonic  log 
 velocity  information  with  the  DT  flow.  The  method  was 
 evaluated  for  the  last  iteration,  which  defines  the  velocity 
 update  to  the  true  model  and  is  more  sensitive  to 
 prediction  errors.  We  tested  the  proposed  method  for  2D 
 synthetic  data,  comparing  the  predictions  with  and  without 
 the  use  of  the  well  info,  the  test  set  and  also  for  the 
 Marmousi model [7]. 

 Method 

 The  migrated  images  used  as  input  for  DT  are  obtained 
 with  RTM  (  Reverse  Time  Migration)  and  a 
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 cross-correlation  extended  imaging  condition  [8].  For  a 
 2D approach, this imaging condition can be written as 

 𝐼 ( 𝑥 ,     𝑧 ,    λ ) =
 𝑠ℎ𝑜𝑡𝑠    

∑    
 𝑡 
∑  𝑊 

 𝑠 
( 𝑥 −    λ ,  𝑧 ,  𝑡 )       𝑊 

 𝑟 
( 𝑥 +    λ ,  𝑧 ,  𝑡 )         ( 1 )      

 In  equation  (1),  the  parameter  𝜆  represents  the 
 subsurface  offset.  For  each  value  of  𝜆  used,  a  different 
 image  is  composed,  with  the  property  that  the  events 
 migrated  with  the  accurate  velocity  focalize  to  zero 
 subsurface  offset  value,  otherwise,  the  events  will  spread 
 to  the  high  values  subsurface  offsets.  It  was  previously 
 shown  that  focalization  can  be  used  as  a  measure  to 
 correctly  update  the  velocity  model  [9].  For  our 
 application,  we  used  fourteen  subsurface  offset  values, 
 with  values  in  a  range  between  zero  and  280  meters. 
 Maximum  subsurface  offsets  were  empirically  chosen  in 
 order  to  capture  the  maximum  offset  where  it  was 
 possible to observe coherent events. 

 Since  it  is  a  proof  of  concept  work,  we  created  a  synthetic 
 2D  data  set,  with  1000  velocity  models  with  3.5  km  of 
 depth  and  9  km  of  lateral  extension.  The  spatial  sampling 
 used  was  equal  to  10m  in  both  directions.  The  velocity 
 models  were  created  to  represent  a  high  structural 
 complexity,  simulating  a  system  of  deposition,  folding, 
 faulting,  and  erosion,  which  aims  to  be  a  simplified 
 version  of  the  actual  geological  process.  For  each  velocity 
 model,  we  defined  up  to  four  drilled  positions  to  be  used 
 as  an  extra  channel  in  the  input  image.  For  each  model, 
 we  simulated  a  synthetic  seismic  acquisition  by 
 implementing  the  acoustic,  isotropic  wave  equation.  We 
 used  a  Ricker  wavelet  with  a  peak  frequency  of  20  Hz  to 
 simulate  the  source.  The  acquisition  was  designed  as  a 
 split  spread  acquisition,  with  a  maximum  offset  equal  to 
 3,5km  and  in  order  to  have  full  coverage  inside  the 

 model,  which  was  laterally  extrapolated  to  allow  the  full 
 shot over the region of interest. 

 The  chosen  architecture  was  a  U-Net  [10].  The  U-Net  is 
 an  encoder-decoder  fully  convolutional  model  typically 
 used  in  computer  vision-related  tasks.  Encoder-decoder 
 models  are  often  employed  in  these  tasks  because  they 
 often  work  with  inputs  and  outputs  of  the  same  size, 
 which  is  the  for  DT.  Although  encoder-decoder  models 
 are  commonly  used  in  classification  or  segmentation 
 tasks,  they  can  be  repurposed  with  an  adequate  choice  of 
 the  loss  function  and  normalization  of  the  input  and  output 
 data.  Since  our  task  of  generating  velocity  updates  using 
 the  U-Net  is  closer  to  a  nonlinear  regression  problem,  we 
 used  the  mean  squared  error  between  predicted  and  real 
 velocity  updates  as  a  minimization  objective  for  the 
 training process of our network models. 

 Figure  1  represents  the  flow  for  the  last  iteration  of  DT. 
 The  subsurface  offset  gathers  are  treated  as  channels  of 
 the  input  image  for  the  U-Net.  The  outputs  used  for 
 training  are  calculated  as  the  difference  between  the  true 
 velocity  model  and  the  velocity  model  used  in  migration. 
 To  define  the  iterative  nature  of  the  process,  at  each 
 iteration,  the  model  used  for  migration  is  the  slowness 
 smoothed  using  a  Gaussian  filter,  which  for  the  last 
 iteration  has  σ  =20.  After  the  prediction,  the  result  is 
 summed  over  the  model  used  in  migration,  to  define  the 
 result.  For  the  case  where  the  well-info  is  used,  there  is 
 an  extra  input  channel,  which  is  not  equal  to  zero  just  in 
 the  well  locations,  where  it  assumes  the  values  of  the 
 desirable  velocity  update  in  that  position.  The  velocities 
 used during the flow and its updates are scaled to km/s. 

 Results 

 The  performance  of  each  approach  was  evaluated  over 
 100  velocity  models,  initially 
 separated  from  the  original 
 set,  and  over  the  Marmousi 
 model.  We  compared  the 
 results  of  training/predicting 
 using  the  extra  well-log  data 
 and  not  using  this 
 information.  We  evaluated 
 Structural  Similarity  Index 
 Method  (SSIM)  and  the 
 Relative  Model  Error  (RME) 
 over  the  100  test  models  with 
 and  without  the 
 well-information.  The 
 observed  mean  SSIM  without 
 well-info  was  equal  to  0.731, 
 and  with  well-info  was  equal 
 to  0.745,  while  the  mean 
 RME  without  well-info  was 
 equal  to  2.890,  and  with 
 well-info  equal  to  2.728. 
 Despite  being  a  small  score 
 difference,  they  made 
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 significant differences in the structures of the final model. 

 Since  generalization  is  an  important  question  for 
 deep-learning  applications,  we  also  evaluated  the 
 performances  of  DT  for  the  Marmousi  model.  Figure  2 
 shows  the  predicted  results  for  two  models  from  the  test 
 set  ((a)  and  (b)),  and  also  for  the  Marmousi  mode  (c).  The 
 dashed  white  lines  indicate  the  well’s  position,  and  we 
 compared  the  prediction  without  and  with  well-info  and 
 the  real  expected  model.  It  is  important  to  mention  here, 
 that  we  have  chosen  models  with  two  wells,  however,  the 
 models  used  for  training  present  the  number  of  wells 
 varying from one to four. 

 It  is  possible  to  observe  in  Figure  2  that  the  well-info 
 predicted  models  with  more  continuous  layers  and  details 
 in  general  and  better-represented  faults  closer  to  the  well. 
 One  important  aspect  is  that  the  well-information 
 improves  the  result,  and  the  resolution  of  the  velocity 
 layers, even far from the well-position. 

 We  also  analysed  the  SSMI  of  the  predicted  models  when 
 compared  with  the  true  ones.  The  SSMI  for  the  model  in 
 Figure  2  (a)  is  equal  to  0.766  for  the  case  without 
 well-info,  and  is  equal  to  0.797  for  the  case  with  well-info. 
 For  the  model  in  Figure  2  (b)  the  SSMI  is  equal  to  0.778 
 for  the  case  without  well-info  and  is  equal  to  0.808  for  the 

 case  with  well-info  .  And  for  the  Marmousi  model  the  SSMI 
 with  the  real  model  is  equal  to  0.467  for  the  case  without 
 well-info,  and  is  equal  to  0.481  for  the  case  with  well-info. 
 Despite  the  final  error  for  the  Marmousi  being  larger  than 
 the  one  observed  for  the  test  set,  the  predictions  obtained 
 would  be  a  good  initial  model  for  FWI.  In  this  case,  it  is 
 also  possible  to  observe  the  benefits  of  using  well-log 
 velocity information. 

 Figure  3  shows  the  velocity  profiles  for  the  models  in 
 Figure  2  extracted  exactly  at  the  well’s  positions.  As  it  is 
 observed  when  analysing  the  models,  the 
 well-information  is  able  to  improve  the  predictions, 
 defining with better resolution the velocity contrasts. 

 Conclusions 

 The  use  of  deep  learning  algorithms  for  velocity  model 
 building  has  attracted  great  research  interest.  The  use  of 
 input  in  the  same  domain  as  the  output  of  the  neural 
 network  opens  a  series  of  possible  data  uses.  This  works 
 shows  that  combining  migration  images  with  localized, 
 sparse,  and  accurate  velocity  information  improves  the 
 overall  deep-tomography  resolution  and  structural 
 features  around  the  wells.  This  work  shows  that 
 deep-learning  inversion  can  benefit  from  sparse 
 information  from  the  direct  use  of  sonic  well-log 
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 information  and  is  able  to  improve  predictions,  even 
 outside the well-log positions. 

 The  use  of  the  extra  channel  must  be  investigated  for  the 
 complete  flow  of  deep-tomography,  in  order  to  measure 
 the  effect  over  the  final  model  when  the  starting  model  is 
 a simplified horizontal gradient of the true model. 
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