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Abstract

Geophysical modeling often requires the computation of
spatial derivatives to obtain additional components of
physical fields used in geophysical methods. In this
paper, we propose a new approach to calculating spatial
derivatives in a semi-analytical manner. The finite element
method is employed to solve the underlying differential
equations, which involves discretizing the domain and
forming a linear system. The proposed semi-analytical
spatial derivative is applied analytically to this linear
system. In addition, mesh refinement is crucial for
obtaining accurate solutions when working with discretized
domains. To address this issue, we utilize an a posteriori
error estimation method to generate an efficient mesh
that produces accurate solutions. The semi-analytical
spatial derivative is employed to define a new local error
estimator within the refinement procedure. To validate
the effectiveness of our approach, we apply the semi-
analytical derivative and the refinement procedure to two
differential equation problems. The first problem involves
a simpler Poisson equation, which aids in visualization
and understanding. The second problem focuses on
the 2D modeling of the magnetotelluric method, where
the solution and its spatial derivative are required for
impedance calculations. In both cases, our proposed
methodology demonstrates efficiency, particularly in the
refinement procedure for modeling.

Introduction

Numerical derivative methods are widely used in various
scientific and engineering applications, particularly in
solving partial differential equations (PDEs) through finite
element, finite difference, or spectral methods. These
methods are employed to calculate the spatial derivatives
of a solution field, which are critical in modeling and
simulation processes.

We present a new approach to obtain spatial derivatives
in a semi-analytical manner, applied to problems solved by
the finite element method (FEM). As FEM is a numerical
method to obtain the solution of PDEs through a linear
system, the proposed procedure is analytically applied to
this system. Newman (1997) presents a similar procedure
to obtain the sensitivity matrix from the derivative of the
linear system with respect to the parameters.

The validation of the semi-analytic derivative is carried
out on a Poisson’s equation problem, whose solution and
spatial derivative are calculated analytically. Then, its
application to the adaptive mesh refinement problem is
proposed. Due to its nature, it is used in the recovery-
based error estimation, a class within the a posteriori
error method (Ainsworth & Oden, 2000; Grätsch & Bathe,
2005). In the works of Key & Weiss (2006) and Li &
Key (2007), this methodology is applied to the modeling of
electromagnetic methods. In these works, a dual or adjoint
problem is used to quantify the local influence of non-local
errors. We use a modified gradient obtained with the semi-
analytical derivative procedure to locate and quantify the
local influence, and then define a new local error estimator.

Finally, we apply an adaptive mesh refinement algorithm to
the problem of the Poisson equation and to the modeling
of the magnetotelluric (MT) method. In the latter, an
optimization process is used in the adaptive refinement.
The results of the proposed estimator are compared with
the standard error estimator, and show efficiency in terms
of the number of nodes.

Poisson’s equation

In electrostatic field problems, the electric potential (φ ) is
governed by the two-dimensional Poisson equation (Jin,
2002),

−∇
2
φ = h , (1)

where the potential source h = ρ/ε is given by the ratio of
the charge density (ρ) and the dielectric permittivity of the
medium (ε). Considering a rectangular two-dimensional
domain Ω = (0,2)× (0,2), and h(x,y) is chosen such that
the analytical solution of equation 1 is given by,

φ(x,y) = 10(1− ex)(1− ex−2)(1− ey)(1− ey−2) , (2)

whose values on the domain boundaries are zero.

Finite Element Method

The solution of equation 1 can be obtained via FEM.
The Appendix presents the mathematical development
of applying the Galerkin method to triangular elements,
resulting in the elemental system Keue = ge. Jin (2002)
shows that the assembly of the global system is obtained
by K = ∑

M
e=1 Ke and g = ∑

M
e=1 ge (M number of elements).

Thus, the solution of the electric potential φ in the domain
Ω ⊂ R2 is obtained from the following linear system:

K u = g , (3)

of size N (N number of nodes), where u is the solution
vector containing the electric potential φ at all coordinates
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(x,y) ⊂ Ω, g is the vector related to the physical laws
describing the problem, referred to as the vector of nodal
forces. The matrix K is directly linked to the problem
geometry, referred to as the matrix stiffness, and it is
sparse, symmetric, and positive definite. Figure 1 shows
the analytical and FEM solutions (equation 1).
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Figure 1 – Comparison between the analytical
solution (φ ) and the solution obtained via FEM (u).
Mesh with 87 nodes.

Semi-analytical spatial derivative

In this section, an approach is presented to obtain the
spatial derivative of the linear system 3 in a semi-analytical
manner. This procedure is similar to the one discussed in
Newman & Alumbaugh (1997) for obtaining the sensitivity
matrix, which involves taking derivatives of the linear
system 3 with respect to the parameters. In this case, the
elemental system Keue = ge is differentiated with respect to
the coordinate xn (n = 1,2,3), where xn ∈ xe. Therefore, we
have:

Ke ∂ue

∂xn
=

∂ge

∂xn
− ∂Ke

∂xn
ue, (4)

where the matrix ∂Ke/∂xn and the vector ∂ge/∂xn are,
respectively,

∂Ke
i j

∂xn
=

−1
4Ae

[
bn

2Ae
sgn(Be)(b jbi + c jci)−

(
ci

∂c j

∂xn
+ c j

∂ci

∂xn

)]
,

(5)

∂ge
i

∂xn
=

1
12

[
bn

2
sgn(Be)

3

∑
j=1

(1+δ (i− j))h j +Ae
∂hn

∂xn
(1+δ (i−n))

]
,

(6)

where i, j = 1,2,3 and Be =
1
2 (a1 +a2 +a3). The definitions

of the variables above are presented in the Appendix. The
derivative ∂ck/∂xn (k = i or j) is given by,

∂ck

∂xn
= sgn(n− k)(−1)n+k−2 .

The system 4 shows that the derivatives with respect to the
elements of the vector xe result in 3 independent systems,
which follow the following assembly of the global system,

∂K
∂x

=
M

∑
e=1

3

∑
n=1

∂Ke

∂xn
and

∂g
∂x

=
M

∑
e=1

3

∑
n=1

∂ge

∂xn
,

thus, the global system is given by:

K
∂u
∂x

=
∂g
∂x

− ∂K
∂x

u , (7)

whose Neumann boundary condition is applied using the
values of ∂φ/∂x. Figure 2 shows the comparison between
the analytical and the proposed semi-analytical derivatives.
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Figure 2 – Comparison between the analytical
derivative (∂φ/∂x) and the semi-analytical derivative
(∂u/∂x). The values at the green points are shown
in Figure 5.

Particular case

The system 7 is the general case where the spatial
derivative of the solution is obtained for all coordinates in
the domain Ω. Next, we will address the following particular
case, where the spatial derivatives are obtained only at the
coordinates (x∗,y∗), where (x∗,y∗)⊂ (x,y). In other words,
at some points of the discretization.
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Figure 3 shows the point Pi(xi,yi), where Pi ∈ (x∗,y∗),
and by taking the derivative of the elemental system with
respect to xi, we arrive at the system 4, since xi ∈ xe. Thus,
the derivatives

∂Ke

∂xi
=

∂Ke

∂xn
and

∂ge

∂xi
=

∂ge

∂xn
,

where n is the numbering within the elemental system (n =
1 to 3) for the coordinate xi. Figure 3 shows elements 5,
23, and 27, where xi changes the numbering n within each
element. Therefore, the derivative of the matrix ∂K5/∂xi of
element 5 will be with respect to x2, while for elements 23
and 27, they will be with respect to x1 and x3, respectively.

Local numbering
1 2 3

5 (xa,ya) (xi,yi) (xb,yb)

23 (xi,yi) (xa,ya) (xc,yc)

E
le

m
en

t

27 (xd ,yd) (xb,yb) (xi,yi)

Figure 3 – Location of point P(xi,yi) and the elements
that share this point.

In this case, the system 4 results in a different global
system than the general case, since the derivative is taken
with respect to only one element of xe. Thus, the global
system follows the following assembly,

∂K
∂x∗ =

L

∑
e=1

∂Ke

∂xn
and

∂g
∂x∗ =

L

∑
e=1

∂ge

∂xn
,

where L is the number of elements that share the
coordinates (x∗,y∗) and n is the local numbering for each
of these coordinates.

The global system for the particular case is similar to
system 7 (with x= x∗), however, with a sparsity degree that
depends on the number of elements in (x∗,y∗). In addition,
a homogeneous Neumann boundary condition is applied.
A similar procedure is performed to obtain the derivatives
∂u/∂y and ∂u/∂y∗.

Figure 4 shows the derivative ∂u/∂x∗ for the set of
positions (x∗,y∗). The values of ∂u/∂x and ∂u/∂x∗ at
these positions are plotted in Figure 5, and we can observe
a coherence of these values compared to the analytic
derivative. Due to the coarse mesh, both the solution and
the derivative of the solution are not accurate. To solve this
problem, adaptive mesh refinement is performed.
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Figure 4 – Semi-analytical derivative ∂u/∂x∗. The
values at the green points represent the positions
(x∗,y∗).
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Figure 5 – Profile with values of the analytical and
semi-analytical derivatives at coordinates (x∗,y∗).

A posteriori error estimation

The posterior error estimation method is based on an
evaluation of the numerical solution obtained by an
approximation method, such as the FEM, to identify where
the solution is not sufficiently accurate. Ainsworth & Oden
(2000) discusses the theory and applications of posterior
error estimation in finite element analysis.

Key & Weiss (2006) and Li & Key (2007) employ the
recovery-based error estimation method, whose local error
estimator is given by:

ηe = ∥∇ũh −∇uh∥L2(e) , (8)

where ∇uh is the gradient of the approximate solution and
∇ũh is the recovered gradient. Zienkiewicz & Zhu (1987)
suggested post-processing the recovered gradient in terms
of the interpolation functions ∇ũh = ∑

N
j=1(∇ũh) jϕ j. Thus,

the recovered gradient is determined by a standard L2
projection,∫

Ω

ϕi (∇ũh −∇uh) dΩ = 0 i = 1, . . . ,N, (9)

which leads to a linear system for determining the nodal
values (∇ũh) j,

N

∑
j=1

∫
Ω

ϕiϕ j dΩ (∇ũh) j =
∫

Ω

ϕi∇uh dΩ i = 1, . . . ,N. (10)
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Key & Weiss (2006) refers to the standard estimator as the
basic error estimator (BEE), as it can be adapted to many
numerical problems. Based on this, we present a new
approach to the BEE, using the gradient of the approximate

solution for the particular case ∇u∗ =

(
∂u
∂x∗ ,

∂u
∂y∗

)
. Thus,

the new recovered gradient is obtained from,

N

∑
j=1

∫
Ω

ϕiϕ j dΩ (∇u⋆h) j =
∫

Ω

ϕi dΩ (∇u∗h)i i = 1, . . . ,N, (11)

where (∇u∗h)i are the nodal values of ∇u∗. Finally, we define
the new local error estimator, referred to as the spatial error
estimator (SEE):

ξe =
∥∇u⋆h −∇u∗h∥L2(e)

∥∇u∗h∥L2(e)
. (12)

Adaptive mesh refinement

The algorithm for adaptive mesh refinement consists of
evaluating the local error estimator in each element, and
if it exceeds a tolerance value (ξe > tole), the size of the
element is halved. This procedure is iterative, with each
iteration k evaluating the mesh, reducing the size of the
elements that need refinement, and generating a new
mesh (k + 1) based on this information. The solutions uk

and uk+1 are evaluated at positions (x∗,y∗), such that the
maximum value of the relative difference

max
(∣∣∣∣uk(x∗,y∗)−uk+1(x∗,y∗)

uk+1(x∗,y∗)

∣∣∣∣)< tolu

is smaller than the established tolerance criterion (tolu),
then the refinement procedure is terminated. To prevent
the elements from being drastically reduced in size, a
minimum area value (Amin) was adopted.

Results: Poisson’s equation

Figure 6 shows the results using BEE and SEE refinements
in Poisson’s equation. The spatial derivatives have values
close to those obtained analytically, with a relative error
of less than 1% (Figure 7). The main difference between
these results is the direction of the refinement region
around the positions (x∗,y∗) for the SEE refinement, which
results in a mesh with fewer nodes (1915 nodes) compared
to the BEE refinement (2158 nodes). The difference in the
number of nodes between the meshes is small, but it is
an indication that the SEE refinement does not refine the
entire mesh as in the BEE refinement.

Results: magnetotelluric method

We applied the refinement procedures to a larger problem,
in this case, the modeling of the MT method. We will
address the 2D modeling, defined by the variation of the
isotropic electrical conductivity (σ ) only in the (x,z) plane.
The total fields E and H are defined as the sum of primary
and secondary fields (Hohmann, 1987). Thus, the electric
component in the strike direction (y direction), transverse
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Figure 6 – Meshes obtained with BEE and SEE
refinements. The values at the red points are plotted
in Figure 7.
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Figure 7 – Profile with the values of spatial derivatives
at positions (x∗,y∗), obtained with the meshes from
Figure 6.

electric mode (TE), is obtained by the equation.

∇ ·
(

1
z

∇Es
y

)
−σEs

y = Js
y , (13)

where z = iωµ0 is the impedance and Js
y = ∆σE p

y is the
current density. To calculate the apparent resistivity and
phase, it is necessary to obtain the component Hs

x , which
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is obtained by taking the derivative,

Hs
x =

1
z

∂Es
y

∂ z
. (14)

The validation of the MT modeling is performed using a 1D
model, which consists of a layer with a thickness of 500 m
inserted into a homogeneous half-space at a depth of 1000
m. The conductivity of the layer and the half-space is 10−2

and 10−3 S/m, respectively. The MT sounding is conducted
with frequencies ranging from 10−3 to 103 Hz.

The refinement procedure is applied on the same mesh for
each frequency, starting from the lowest frequency up to
the highest. In addition, to optimize the process, the target
area is reduced, which is limited by a region that depends
on the skin depth of each frequency.

Figure 8 shows the result using SEE refinement, where
the refinement region is directed around the observation
point, generating a mesh with 19074 nodes. In contrast,
in the BEE refinement, the heterogeneity is the target
of the refinement, which generates a mesh with 76578
nodes. The apparent resistivity and phase values obtained
with these two meshes are very close to the 1D modeling
results, with a relative error of less than 0.4% (Figure 9).

Conclusion

We present a new approach to calculate the spatial
derivatives of solutions using FEM. In the literature,
there are several numerical methods to compute these
components; however, we propose a semi-analytical
approach. We validated this procedure in a small
and easy-to-visualize problem (Poisson’s equation), where
the solution and derivatives are obtained analytically.
Furthermore, we present a particular case in which the
spatial derivatives are calculated at specific coordinates
of the mesh discretization, generating a modified gradient
of the solution. This gradient is used in the recovery-
based error estimation method, and then the spatial error
estimator (SEE) is formulated. The mesh obtained in the
SEE refinement presents a higher refinement around the
positions of interest, similar to the results obtained with
dual error estimators. However, the proposed estimator is
much simpler to apply and more efficient because it does
not require an adjoint solution of the finite element system.

The SEE refinement procedure is applied to the 2D
modeling of the MT method, resulting in a mesh that
is four times smaller than the one obtained with the
BEE refinement. In this case, a mesh undergoes the
refinement process for each frequency. The process is
optimized by targeting the refinement area based on the
skin depth, meaning that the refinement area decreases
as the frequency increases. This approach enables
the generation of EM fields accurately across the entire
frequency range.

In conclusion, we have presented the application of
the semi-analytic spatial derivative in adaptive mesh
refinement and in the calculation of the magnetic
component in the MT method. These two applications are
important in electromagnetic methods, as it is necessary

Figure 8 – Meshes obtained with BEE and SEE
refinements. The MT sounding is performed at the
red point.

to obtain a mesh that generates the lowest possible error
in modeling and inversion processes. Depending on the
problem formulation, it is also necessary to obtain the
components of the EM field through spatial derivatives.
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Appendix: Galerkin’s method

In this appendix, we present the application of the Galerkin
method to the Poisson equation (1). The Galerkin method
belongs to the family of weighted residual methods, in
which the weight functions are equal to the basis functions
(Jin, 2002). Let L be a differential operator, ϕi the weight
function, and f the forcing function, then∫

Ω

ϕiL {γ}T {ϕ} dΩ =
∫

Ω

f ϕi dΩ i = 1, . . . ,N,

where γ are the coefficients to be determined. Thus, by
applying these integrals to the element e in equation 1,

−
∫

Ωe

(∇ · (∇φ))ϕi dΩ =
∫

Ωe

h ϕi dΩ , (15)

Applying the vector identity α∇ · u = ∇ · (αu)−∇α · u and

the divergence theorem
∫

Ωe

∇ · v dΩ =
∮

∂Ωe

v · n̂ dΩ to the

equation above, we obtain,∫
Ωe

(∇φ ·∇ϕi) dΩ =
∫

Ωe

h ϕi dΩ+
∮

∂Ωe

(∇φ ϕi) · n̂ dΩ , (16)

In the equation above, the line integrals on the boundary
of each element will cancel out when computed with the
contributions from adjacent elements. However, only the
components on the domain boundary will remain, where
homogeneous Dirichlet conditions are applied. Therefore,
the line integral in equation 16 can be neglected.

Writing the electric potential as a linear combination of the
basis functions (φ = ∑

3
j=1 φ jϕ j) and the source term (h =

∑
3
j=1 h jϕ j) in equation 16, we have:

3

∑
j=1

∫
Ωe

(
∇ϕ j ·∇ϕi

)
dΩ φ j =

3

∑
j=1

∫
Ωe

ϕ j ϕi dΩ h j , (17)

with i, j = 1 to 3, this is the nodal finite element
approximation.

The basis functions are given by ϕi =
1

2Ae
(ai + bix + ciz),

where: ai = x jyk − xky j, bi = y j − yk and ci = xk − x j, with
a cyclic permutation of i, j, and k, and Ae is the area of the
element e given by Ae =

1
2 | a1 +a2 +a3 |.

Solving the integrals in 17 using the formula for polynomial
integration on triangles (Jin, 2002; Key & Ovall, 2011), we
have:

3

∑
j=1

[
1

4Ae
(b jbi + c jci)

]
φ j =

Ae

12

3

∑
j=1

(1+δ (i− j)) h j , (18)

where δ (i− j) is the Dirac delta function. Equation 18 forms
the elemental system Keue = ge,

Ke
i j =

1
4Ae

(b jbi + c jci) ,

ue
i = φi ,

ge
i =

Ae

12

3

∑
j=1

(1+δ (i− j)) h j ,

which depend on the vectors xe = [x1,x2,x3] and ye =
[y1,y2,y3].
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