Pareto optimization via genetic algorithm for selecting a portfolio of oil and gas
exploration projects.

Wellington C R Nascimento

E&P — Exploration and Production
Petroleo Brasileiro S.A.
Rio de Janeiro, Brazil
wellington.carlos@petrobras.com.br

Abstract—The oil and gas exploration and production industry
deals with various uncertainties and risks, whether inherent in
exploration projects or characterized by the high volatilities of
commodity prices. Due to the high costs of exploration and
production development, combined with the time required for
oil fields to begin production, it is essential to use techniques
that minimize uncertainties and risks throughout the
production chain in order to maximize the value of a portfolio
of projects, each project has its expected economic return for a
given investment and a certain probability of success.
Therefore, the decision-maker must select the combination of
projects that maximize the portfolio value based on their
limited investment capital. Thus, a careful portfolio analysis
will allow for the identification of a combination of projects
that result in the most efficient use of capital. In this work, we
present an application of Genetic Algorithms to the problem of
selecting projects that maximize the Net Present Value of the
portfolio, while minimizing investments, maximizing the
probability of success, and meeting other constraints deemed
important by the decision-maker. For this, we will use
multi-objective  optimization, also known as Pareto
Optimization, which presents a set of optimal solutions given a
space of options with apparently conflicting objectives, such as
high-return investments versus low-risk investments. Pareto
Optimization allows for a comprehensive view of available
options and for decision-making based on multiple criteria.
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I. INTRODUCTION

Optimizing a portfolio of projects is a complex and
challenging problem that involves selecting a set of projects
to maximize return on investment, taking into consideration
certain constraints such as budget, resources and risks.
Geoscientists and engineers evaluate prospects in the
subsurface and determine, with some degree of uncertainty,
the location/depth, volume of oil/gas, the required
investment to develop a reservoir and the probable returns
calculated according to the price of a barrel of oil and the
estimated production curve [1]. In addition to the probability
of success or exploratory chance factor, recovery factors and
the commercial viability of the exploration opportunity.
Therefore, a company with multiple projects in its
investment portfolio has the difficult task of selecting those

that minimize risks and maximize profits, in addition to
other strategic criteria and investment commitments with
regulatory agencies. It is up to managers or even company
directors to make decisions regarding the process of
selecting exploratory projects that add value to the company.
Traditional criteria use discounted cash flow to select
projects with both the highest positive Net Present Value
(NPV) and Expected Monetary Value (EMV). This
traditional criterion is, however, limited in real-world
situations [2], because these parameters (NPV and EMV)
miss to account for market strategies that the
decision-maker must analyze in the project selection stage.
Let us take, for example, the maximization of the volume of
oil in place (VOIP) aiming to incorporate strategic reserves
or even the restriction of available capital for investment. It
is also worth noting that depending on the number of
projects, the number of possible permutations becomes a
very difficult task, and the traditional method of ranking
projects by NPV, rate of return, or profitability index falls
short in producing optimal results [3].

In this work, we use Genetic Algorithms (GA) as a search
and optimization method. As the problem is classified as a
multi-objective optimization problem, as we will see later,
the search space becomes very large and difficult to model.
Therefore, we will use Pareto Optimization, which presents
an optimized set of solutions in the space of feasible
solutions, and within this set, it is possible to obtain an
optimal solution that satisfies the problem constraints,
having a decision model available.

Pareto Optimization is obtained through the NSGA-II
algorithm, which is very popular in the literature for solving
multi-objective optimization problems. NSGA-II obtains a
set of optimal solutions for the problem known as
non-dominated solutions. The image of this set in the space
of objective functions forms the Pareto front.

II. METHODS
A. Genetic Algorithms

Genetic Algorithms are an optimization technique based
on Charles Darwin’s theory of evolution by natural
selection. John Henry Holland was the pioneer in the



introduction of genetic algorithms as an optimization
technique inspired by natural evolution in his book
Adaptation in Natural and Artificial Systems, published in
1975.

The basic concept of the natural selection process is
related to the favoring of the hereditary transmission of
beneficial characteristics to future generations of a
population of reproducing organisms. Conversely,
unfavorable characteristics become less common among
descendants over time. Similarly, genetic algorithms operate
to find the best solutions to a problem. The process begins
with a random set of candidate solutions, evaluating their
fitness in relation to the problem’s objective function, which
is the optimization target. In the case of a portfolio of
exploratory projects, the value of each project, cost, risk and
other constraints are considered. The candidate solutions are
part of a generation. This generation is subjected to genetic
crossover and mutation operators to produce a new
generation of solutions. The new generation is used as input
for subsequent algorithm iterations. The most favorable
solutions are selected for reproduction and the next
offspring is generated from them. The process is repeated
for several generations until an acceptable solution is found.

The main steps of the algorithm are:

® Fitness: an analysis of solutions (population individuals)
is performed to find candidate solutions based on the
objective function.

® Reproduction: individuals are selected and copied to the
next population according to their fitness.

® Crossover: recombination of the selected solutions,
generating new individuals.

® Mutation: Random Exchange of characteristics in
individuals, adding diversity to the population.

® Update: the new individuals are inserted into the current
generation population.

e Finalization: analysis of the termination conditions of
the evolution (acceptable solution found).

Fig. 1 illustrates the execution steps of the Genetic Algorithm.
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Figure 1. GA flowchart.

Genetic Algorithms can be customized to address a wide
range of problems, such as optimization problems with
complex constraints and multi-objective decision problems,
which is the case analyzed in this work.

B. Pareto Optimization

Pareto Optimization, also known as multi-objective
optimization, is common in many problems in engineering,
economics and logistics and basically consists of obtaining a
set of solutions that satisfy certain constraints and optimize
a function composed of several objectives. These complex
problems become interesting when their objectives are
conflicting, meaning that decreasing the value of one
objective necessarily increases the value of another. In these
scenarios of conflicting objectives, a solution that
maximizes all objectives is infeasible. However, it is
possible to find a set of solutions that represents the best
trade-off between objectives.

Conlflicting objectives are common in oil exploration
projects, where we constantly need to maximize economic
return while minimizing exploration costs, minimizing
geological uncertainties while also maximizing the
discovery of new reserves. Therefore, the optimal solution
of one objective function does not coincide with the optimal
solutions of the other objective functions. The solution to
this impasse is not unique, but rather a family of solutions
known as Pareto-Optimal solutions. Pareto-Optimal
solutions are optimal in a broad sense, meaning that no other
solution in the search space will be superior to them when
all objectives are considered simultaneously. This concept
was introduced by the Italian economist Vilfredo Pareto in
the late 19th century.

More formally, the multi-objective optimization problem
can be defined as follows:

Given a vector of decision variables with dimension n,
x = {x1, ... xn} in the search space X,we want
to find a vector x* € X that simultaneously
minimizes (maximizes) the r objetive functions.

The essence of Pareto Optimization is to find the set of
solutions P* that contains a family of Pareto-Optimal
solutions. Solutions are compared through the Pareto
dominance property.

Definition (Dominance): A point x; € X is said to dominate
o€ X if flx) <fixy) and fic) #f(x,).

Definition (Pareto-Optimal Solution): We say that x* € P* is
a Pareto-Optimal solution of the multi-objective problem if
there is no other solution x € P* such that f{x) <f(x*), i.e., if
x* is not dominated by any other feasible point.

A Pareto-Optimal solution cannot be improved with
respect to any objective function without worsening at least
one other objective function. In the case of two objectives,
Fig. 2 [4] illustrates the concept of dominance where points
A and B dominate C, points E and F are dominated by C,
and points D and G are indifferent to C.
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Figure 2. Pareto dominance.

Fig. 3 shows two examples of solutions families for two
objective functions in the case of minimization (left) and
maximization (right) with their respective Pareto-Optimal
solutions (Pareto front).
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Figure 3. Pareto-optimal solutions (red).

The possible optimal solutions for the case of two
objectives (bi-objective) functions are illustrated in Fig. 4
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Figure 4. Possible Pareto fonts.

C. NSGA-1I

The NSGA-II (Non-dominated Sorting Genetic
Algorithm) algorithm is one of the pillars of multi-objective
optimization based on genetic algorithms. It was developed
as a response to the deficiencies of early evolutionary
algorithms. The basic idea is to allow a population of
candidate solutions to evolve towards the best solution for
solving a multi-objective optimization problem. The
NSGA-II was designed to search for the optimal solution in
an exhaustive list of candidate solutions, resulting in a large
search space.

Fig. 5 illustrates the execution steps of the NSGA-II
algorithm.
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Figure 5. NSGA-II flowchart.

The main objective of the NSGA-II algorithm is to
calculate the Pareto-Optimal solution, which corresponds to
a set of optimal solutions, called non-dominated solutions.
A non-dominated solution provides a suitable combination
of all objective functions without degrading any of them.
For more details, interested readers can refer to [6].

I1I. RESuLTS

Due to issues of confidentiality, to apply multi-objective
optimization, we used the data presented as in [2], listed
here in Table 1. As mentioned by the authors, the data are
realistic enough in the sense of a particular decision-making
context and for the structure of the relationship between the
variables and parameters considered.

The list of potential projects presented in Table 1 has the
following attributes:

e NPV: Net Present Value in case of success in the
exploration phase.

e PoS: Probability of Success.

e RES: Estimate of the size of the hydrocarbon
volume (reserves).

e SYN: Synergy. Relates to the project’s influence on
other projects.

e DHC: Dry hole cost. The risk capital of the project.

e EXT: Qualitative criterion related to the influences
of external factors.



Table 1. Project list.
NPV(USSMM) PoS(%) RES(MMBOE) SYN DHC(USSMM) EXT

P1 1086 10.8 121 5 a5 &

P2 670 KRR 582 1 145 5

P3 2121 9.0 1710 4 180 &

P4 991 81 799 2 95 3

P5 172 1.3 750 2 120 4

PG 385 314 512 4 20 2

P7 1164 9.8 850 5 120 4

] 1639 123 1355 4 110 1

] 451 26.8 678 2 150 &
P10 829 36 700 4 55 1
P11 752 14.0 708 5 60 5
P12 457 208 510 4 %0 5
P13 463 29.0 480 1 20 4
P14 T09 74 300 1 80 1
P15 557 9.4 850 5 50 1
P16 430 9.8 651 2 35 1
P17 383 126 575 3 35 3
P18 374 173 550 5 40 4
P19 320 174 423 1 40 &
P20 338 224 500 3 100 3
P21 455 303 450 3 105 3
P22 37 122 492 5 20 4
P23 56 17.7 101 1 4 3
P24 28 248 580 3 25 2
P25 155 5.6 304 4 30 5
P26 95 15.8 180 1 4 2
pa27 266 282 204 5 40 3
P23 35 252 50 2 18 4
P29 185 1.1 176 5 22 1
P30 153 24 185 4 30 3

The decision Variable in our problem is the selection or
not of the exploratory project, which, according to Table 1,
are named P1, P2, ..., P30. These projects are converted in
terms of genetic data by binary coding. The genetic
algorithm starts with the creation of the initial population of
chromosomes. The chromosome length consists of thirty
genes (proposed projects). If the project is selected, the
encoding will be 1, otherwise 0. Gene selection occurs
randomly. Fig. 6 gives us an idea of the concept of gene,
chromosome and population.
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Figure 6. Gene, chromosome and population.

Population

Thus, the gene represents a project, the chromosome
(individual) represents a solution (portfolio) and the
population represents a family of solutions. A population
consists of a certain number of individuals, each
representing a solution to the problem. In our case, we
consider an initial population of 1000 individuals as shown
in Fig. 7.
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Figure 7. Initial population.

A simple scenario to test the algorithm is to consider the
maximization of NPV and RES simultaneously. In this case,
there is only one solution (red dot), which is the selection of
all projects. This is because, in this case, there are no
constraints. The result is presented in Fig. 8 with NPV =
17066 USSMM and reserves RES = 17996 MMBOE.
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Figure 8. Maximization of NPV and RES.



Fig. 9 presents the progress of the NSGA-II algorithm in
generating the Pareto front. As the number of generations
increases, solution families converge towards a single
family which is the set of solution P* containing a family of
Pareto-Optimal solutions.

1 generation 5 generations

16000 Pareto Front 1
Pareto Front 2
Pareto Front 3

Pareto Front 4 sl e

Pareto Front 5 anil'

Pareto Front 2 3
10000 Pareto Front 6

Pareto Front 3 a8

Pareto Front 4

Pareto Front 5 _, g

s
o Pareto Front 7 d

8000 Pareto Front & ‘,’;

6000 f

ol £

2000

Pareto Front 1

14000

s e 0 e e
s es e

12000

NPV (US$MM)

10 generations 50 generations

16000 s Pareto Front 1 e Pareto Front 1 e

« Pareto Front 2 ,"‘
14000 « Pareto Front 3 T
12000

10000

8000

6000
4000
2000 2

0 d

NPV (USSMM)

0 500 1000 1500 0 500 1000 1500
DHC (US$MM) DHC (US$MM)

Figure 9. Pareto fronts.

A first experiment was conducted to maximize NPV and
minimize DHC. The result of simulation for 100 generations
is shown in Fig. 10. We can see all solution families (green
dots) found for the problem’s imposed constraints. In
addition to the Pareto-Optimal solutions in red dots.
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Figure 10. Pareto-optimal solutions.

The evaluation of everyone in the population was done by
calculating the NPV and DHC. The next step is the selection
of chromosomes that will be transmitted to the next
generation. This was done using the ranking method that
classifies individuals according to their fitness.

To perform the crossover, we used the one-point
recombination method with a 50% probability, as shown in

Fig. 11.

Figure 11. One point crossover.
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In the case of mutation, which consists of a random change
in one or more genes of the chromosome, we use a rate of
1%. The mutation is performed as shown in Fig. 12.
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Figure 12. Before and after the mutation.

With the solutions presented in Fig. 10, the decision-maker
enters the circuit with a strategic model or limitations
regarding the capital to be invested. Let’s say the
decision-maker has a capital of 1000 US$SMM at their
disposal. In this case, we would need to present the solution
on the Pareto frontier that maximizes the NPV of projects
with this capital limitation. To do so, simply select the
solutions that are limited to a DHC of 1000 US$MM, as
shown in Fig. 13.
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Figure 13. Pareto-optimal solution (blue dot).

The Pareto-Optimal solution that maximizes NPV with
the imposed capital limitation is NPV = 10911 US$MM and
total DHC = 987 US$MM, represented in Fig. 13 by the
blue dot. The portfolio that satisfies the problem constraints
is: {P1, P3, P4, PS5, P7, P8, P14, P15, P16, P18, P19, P29,
P30}. A total of thirteen projects.

Another scenario is the maximization of reserves with the
qualitative criterion EXT, which is related to the influence
of external factors in the project’s management, such as
political situation and local infrastructure [2]. This attribute



varies from 1 to 5 on a Likert scale, where 1 means very
negative influence and 5 when they are very positive. The
Pareto-Optimal solutions of the simulation are shown in Fig.
14. Faced with several optimal solutions available, the

decision-maker selects the one that fits the adopted strategy.
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Figure 14. Pareto-optimal solutions (RES x EXT).

The scenario that considers the probability of success
(PoS) of the project is the one that maximizes the EMV and
minimizes the DHC. To obtain the VME we use the
equation (1):

EMYV = PoS*NPV - DHC (1)

The simulation result is shown in Fig. 15 where the blue
dot represents the Pareto-Optimal solution that maximizes
the EMV with the limitation of capital available for
investment.
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Figure 15. Pareto-optimal solution (blue dot).

IV. CONCLUSIONS

This work presents an application of Genetic Algorithms
and the NSGA-II algorithm to obtain the Parcto front
containing solutions for optimized selection of projects in an
exploratory portfolio. Depending on the number of available
projects, it becomes practically impossible to consider all
possible alternatives for economic maximization of the
portfolio. Thus, for decision-makers with capital constraints
and a business rule, Pareto optimization proves to be an
excellent tool for those who want to maximize the value of
their portfolio of oil and gas exploration projects.
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