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 Abstract 

 Delimiting  salt  inclusions  from  migrated  images  during  the 
 velocity  model  building  flow  is  a  time-consuming  activity 
 that  depends  on  highly  human-curated  analysis  and  is 
 subject  to  interpretation  errors  or  limitations  of  the  images 
 and  methods  available.  This  work  proposes  a  supervised 
 Deep  Learning  (DL)  based  method  to  include  3D  salt 
 geometries  in  the  velocity  models.  The  proposed 
 methodology  is  based  on  using  the  subsurface  offset 
 gathers  as  the  input  to  a  U-Net  which  is  trained  to  predict 
 the  correct  salt  inclusions,  which  was  previously  validated 
 for  2D  approaches.  We  generated  the  subsurface  offset 
 gathers  using  RTM  (Reverse  Time  Migration)  with  an 
 extended  imaging  condition.  The  velocity  model  used  in 
 migration  is  inaccurate  (with  a  reasonable  approximation 
 of  sediment  velocity  but  without  salt  inclusions).  We 
 trained  a  U-Net  to  use  common-offset  subsurface  gathers 
 as  input  channels  and  the  correct  salt  masks  as  the 
 output  of  a  supervised  semantic  segmentation  problem. 
 Our  approach  relies  on  subsurface  common  image 
 gathers  to  focus  the  sediments'  reflections  around  the 
 zero  offset  and  to  spread  the  energy  of  salt  reflections 
 over  large  subsurface  offsets.  The  training  process  tuned 
 the  U-Net  to  successfully  learn  the  shape  of  complex  salt 
 body  masks  with  high  accuracy  from  partially  focused 
 subsurface  offset  images.  Moreover,  it  also  performed 
 well  when  applied  to  synthetic  benchmark  data-set  that 
 were not previously introduced in network training. 

 Introduction 

 Velocity  model  building  (VMB)  is  essential  to  make 
 accurate  subsurface  images,  especially  in  regions  with 
 high  contrast  and  structurally  complex  velocities.  One 
 good  example  of  the  limitation  of  conventional  inverse 
 methods  is  the  inclusion  of  salt  bodies  in  the  velocity 
 model,  a  complex  non-automated  method  that  poses  a 

 high  cost  and  is  subject  to  uncertainties.  Salt  inclusion  is 
 critical  during  the  VMB.  Hence  a  mistake  in  the  salt’s 
 geometry  makes  the  image  below  the  salt  unfocused  or 
 distorted  [1],  generating  a  wrong  structure  of  the 
 subsurface.  Therefore,  it  can  lead  to  economic 
 consequences,  especially  in  petroleum  provinces  where 
 the  reservoirs  are  below  complex  salt  structures.  Salt 
 presents  a  great  diversity  of  possible  geometries  and  has 
 a  high-velocity  contrast  with  the  enclosing  sediments.  In 
 complex  areas,  the  definition  of  the  salt  geometry  is 
 estimated  in  an  iterative  process  called  salt  flood  which 
 requires  massive  human  interpretation  input,  geological 
 knowledge  of  the  sedimentary  basin,  and  testing  of 
 different scenarios. 

 Many  recent  works  are  using  DL  to  obtain  the  velocity 
 models[2],  being  particularly  successful  in  predicting  the 
 salt  bodies  embedded  in  such  models  from  raw  shot  data 
 [3],  even  those  with  very  complex  geometries.  The  initial 
 approaches,  e.g.  [4],  used  the  raw  seismic  shot  data  to 
 train  the  network  to  fully  predict  the  correct  velocity  model 
 that  generated  those  seismic  shots.  Their  results  are  very 
 encouraging;  however,  they  can  not  be  easily  extended  to 
 current  seismic  field  data.  The  size  of  real  seismic 
 acquisitions  is  much  larger  than  the  most  modern  device 
 could  support,  and  even  if  they  could  be  supported,  the 
 number  of  convolution  operations  would  be  prohibitive. 
 Besides,  there  is  the  irregularity  of  seismic  shots  and  the 
 geometric  non-correspondence  of  this  data  with  the 
 seismic images or the velocity models. 

 One  alternative  to  reduce  the  data  size  and  the 
 complexity  of  the  task  is  to  address  the  DL  method  only 
 for  the  task  of  salt  inclusions,  by  the  use  of  migrated 
 images  [5]  or  FWI  gradient  responses  [6].  Salt  prediction 
 proposed  in  [5],  reduces  the  input  data  to  the  imaging 
 domain,  by  migrating  the  shots  with  a  reasonable 
 sediment  velocity  model,  without  any  salt  inclusions.  Then 
 the  neural  network  was  trained  to  return  only  the  salt 
 inclusions.  This  flow  defines  a  hybrid  approach  of  the 
 conventional  VMB  workflow  and  DL  velocity  estimation 
 from  seismic  data,  using  DL  only  in  the  most  challenging 
 step of VMB flow: the inclusion of salt structures. 

 Despite  the  successful  results,  previous  salt  inclusion 
 guided  by  DL  relied  on  2D  simulations  and  2D  DL 
 architectures.  The  extension  to  3D  simulations  requires 
 careful  DL  design  to  avoid  memory  issues  on  the  GPUs. 
 In  this  work,  we  propose  to  extend  the  salt  segmentation 
 methodology  proposed  in  [5]  to  3D  data,  using  as  DL 
 architecture  a  U-Net  with  support  for  3D  cubes  .  We  tested 
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 this  approach  over  a  synthetic  seismic  data  set  and 
 showed  that  the  DL  model  could  segment  3D  salt 
 geometries. 

 Methods 

 We  migrated  the  shot  seismic  data  using  RTM  (Reverse 
 Time  Migration)  with  cross-correlation  extended  imaging 
 condition [7], which for the 3D case can be written as 

 𝐼 ( 𝑥 ,     𝑦 ,     𝑧 ,    λ
 𝑥 
,    λ

 𝑦 
) =

 𝑠ℎ𝑜𝑡𝑠    
∑    

 𝑡 
∑          [ 𝑊 

 𝑠 
( 𝑥 −    λ

 𝑥 
,  𝑦 −    λ

 𝑦 
   ,  𝑧 ,  𝑡 )       𝑋    

                                                                                     𝑊 
 𝑟 
( 𝑥 +    λ

 𝑥 
,  𝑦 +    λ

 𝑦 
   ,  𝑧 ,  𝑡 )]         ( 1 )   

 Considering  that  usually  salt  inclusion  is  made  in  a  stage 
 of  velocity  model  building  flow  when  the  sediment  velocity 
 is  well-resolved,  the  shots  are  migrated  with  a  reasonable 
 sediment  velocity  model,  without  any  salt  inclusions. 
 Since  we  are  working  with  synthetic  data,  this  velocity 
 model  is  generated  by  a  smoothed  version  of  the 
 sediment  velocity.  For  each  investigated  subsurface  offset 
 (  or  ),  a different image is generated.    λ

 𝑥 
   λ

 𝑦 
   

 Subsurface  offsets  have  one  interesting  property  that 
 differs  from  the  well-known  surface  offset,  which  was 
 decisive  in  choosing  this  representation  for  the  salt 
 segmentation  method.  An  event  migrated  with  its  correct 
 velocity  model,  concentrates  the  reflections'  energy  in    λ

 𝑥 
   

 =  =0  ,  while  the  uncorrected  migrated  events  spread λ
 𝑦 
   

 their  energy  over  the  far  offsets.  It  is  expected  that  the 
 predominant  events  observed  in  high  subsurface  offsets 
 to  be  associated  with  the  salt  reflections.  To  migrate  the 
 subsurface  offset  panels,  we  varied  and λ

 𝑥 
λ

 𝑦 
   

 independently,  creating  fifteen  panels  to  be  used  as  input 
 for  the  neural  network  training,  with  the  minimum  value 
 equal  to  zero,  and  the  maximum  value  for  =  250m  and λ

 𝑥 
 for  m  .  The  maximum  subsurface  offsets  were λ

 𝑦 
=  312 .  5 

 empirically  chosen  in  order  to  capture  the  maximum  offset 
 where it was possible to observe coherent events. 

 The  supervised  learning  pipeline  proposed  for  2D  models 
 in  [5]  is  summarized  in  Figure  1.  The  inputs  are  the  cubes 
 of  migrated  subsurface  offsets,  with  each  value  of 
 subsurface  offset  corresponding  to  one  channel  of  the 
 input  image.  The  outputs  are  the  cubes  with  the 
 segmented salt geometry. 

 Our  training/validation/test  set  consists  of  30  synthetic 
 velocity  models  with  full  coverage  acquisition  region  equal 
 to  2  km  of  depth,  4  km  of  extension  in  the  inline  direction, 
 and  3  km  in  the  crossline  direction  The  spatial  sampling 
 rate  is  equal  to  12.5  m  for  the  three  directions.  We  linearly 
 extrapolated  the  original  cubes  in  order  to  accommodate 
 the  acquisition  geometry.  We  simulated  synthetic  seismic 
 shots  for  each  model  using  a  finite-difference  wave 
 propagator,  isotropic,  acoustic,  with  second-order  in  time, 
 eight-order  in  space,  and  exponential  attenuation  on  the 
 absorbing  boundaries.  The  acquisition  geometry  defines 
 4800  shots,  with  50  meters  of  increment  in  inline  and 
 crossline  directions.  The  simulated  receivers  are  ten 
 streamers  2000m  long,  spread  with  a  maximum  lateral 
 distance of 500m from the source. 
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 We  constructed  the  3D  velocity  models  using  real  salt 
 geometries  from  velocity  models  built  with  tomography 
 and  FWI  in  regions  with  complex  salt  structures  and  high 
 exploration  interest  in  the  past  decade.  To  increase  the 
 complexity  and  diversity  of  the  training  set,  we  applied 
 over  those  geometries  a  3D  augmentation  algorithm  [8], 
 which  rotates,  flips,  and  resizes  the  original  salt 
 geometries.  After  the  augmentation  process,  we  resized 
 the  salt  geometry  to  fit  into  the  desired  size  and  included 
 it  on  a  simple  sediment  velocity  background.  Figure  2(a) 
 shows  one  example  of  the  30  generated  models.  Another 
 velocity  model  used  in  the  study  was  the  SEG/EAGE  3D 
 salt model [9], which is plotted in Figure 2(b). 

 We  used  a  U-Net  [10]  as  our  network  architecture  of 
 choice;  it  is  composed  of  a  contracting  and  a  symmetric 
 expanding  path,  defining  a  u-shape  form.  Each  step  in  the 
 contracting  path  consists  of  a  series  of  convolutions 
 followed  by  a  pooling  layer.  The  number  of  convolutional 
 filters  increases  at  each  step  and  the  spatial  size 
 decreases  due  to  pooling.  The  expanding  path  does  the 
 opposite,  using  up-convolutions  to  upsample  the  image 
 but  reducing  the  number  of  filters  at  each  step.  During  the 
 expanding  path,  information  from  the  contracting  phase  is 
 concatenated  to  localize  finer  features  better.  The 
 proposed  architecture  uses  3D  convolutional  blocks  that 
 were  previously  used  for  3D  interpretative  geophysical 
 tasks,  e.g.  [11].  The  U-net  architecture  defines  a  flow  in 
 which  the  output  image  has  the  same  size  as  the  output, 
 except  for  the  number  of  channels.  This  feature  is 

 extremely  convenient  to  our  problem  since  migrated 
 images  and  salt  masks  share  the  same  dimensions 
 except  for  the  number  of  subsurface  offsets,  treated  as 
 channels of the input images. 

 The  use  of  3D  convolutional  blocks  requires  much 
 memory  and  presents  a  longer  training  time  when 
 compared  with  2D  operations.  In  order  to  alleviate 
 resource  demands  we  subdivided  the  training  models  into 
 smaller  sections  of  0.8km  in  depth,  1.2km  in  the  crossline 
 direction,  and  1.6km  in  the  inline  direction,  with  respective 
 steps  of  0.4km,  0.6km,  and  0.8km  in  each  direction.  This 
 gives  a  total  of  64  subcubes  per  model.  During  the 
 training  and  validation  phase,  the  subcubes  were  treated 
 as  independent.  However,  since  the  borders  of  the 
 subcubes  suffer  from  the  lack  of  information  from  the 
 neighborhood,  we  chose  intentionally  the  division  with 
 superposition  to  combine  the  prediction  results  using  a 
 Hann  windowing  [12]  to  balance  the  results  before 
 summing  the  subcubes  results.  Since  its  a  segmentation 
 problem,  we  imposed  the  threshold  of  0.5  to  define  salt 
 and non-salt regions. 

 To  train  the  U-Net  we  separated  28  models  as 
 validation/training  sets,  and  left  2  models  for  testing.  The 
 network  was  trained  for  80  epochs,  using  the  Adam 
 optimizer  [13]  with  a  learning  rate  of  0.0001,  and  the 
 Jaccard  loss[14].  We  chose  the  weights  when  the 
 validation  loss  was  lowest  as  the  best-trained  U-Net  to 
 make  the  predictions  for  each  sample  in  our  test  set.  We 
 divided  the  3D  models  in  the  same  way  as  in  the  training 
 phase,  this  time  keeping  track  of  the  origin  of  the  subsets 
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 to  reassemble  the  salt  models.  When  patching  together 
 the  predictions,  as  previously  mentioned,  we  used  a  Hann 
 window in the areas of overlap between subsets. 

 Results 

 We  evaluated  the  prediction  accuracy  of  the  trained  U-Net 
 over  the  two  velocity  models  separated  for  test  and  also 
 for  the  SEG/EAGE  3d  salt  model.  It  is  worth  mentioning 
 that  the  SEG/EAGE  salt  model  has  its  velocity  values 
 unaltered,  being  just  rescaled  to  fit  in  the  model 
 dimensions investigated here. 

 Figure  3  shows  the  result  for  the  models  from  the  test  set. 
 It  is  possible  to  observe  a  great  agreement  between  the 
 true  salt  mask,  and  the  predicted  one.  The  similarity  was 
 also  measured  using  the  Dice  similarity  coefficient[15], 
 suitable  for  imbalance  class  problems.  The  Dice 
 Coefficient  (DC)  was  equal  to  0.94  for  the  model 
 presented  in  Figure  4(a)(c),  and  equal  to  0.9  for  the 
 model presented in Figure 4(b)(d). 

 Figure  4  shows  the  result  for  the  SEG/EAGE  3D  salt 
 model,  where  it  is  possible  to  observe  that  the  accuracy 
 of  prediction  decays  when  compared  with  the  test  set.  It  is 
 possible  to  observe  a  false  positive  region  in  the  border  of 
 the  model,  and  in  general  worse  salt  limits.  The  observed 
 Dice  Coefficient  was  equal  to  0.64.  Despite  this  score  not 
 being  as  good  as  the  ones  observed  for  the  test  set,  this 
 kind  of  model  presents  a  challenge  for  the  generalization 

 ability  of  the  network,  since  the  model  velocity  range  and 
 structures  are  completely  different  from  the  training  set.  It 
 was  previously  shown  in  the  2D  work  [5]  that  the  number 
 and  the  distribution  of  the  subsurface  offset  are  important 
 parameters  to  guarantee  the  same  prediction  score  for 
 the  SEG/EAGE  model.  Different  subsurface  offset  ranges 
 and  distributions  were  not  yet  investigated  in  the  current 
 work and are an open question. 

 Conclusions 

 Salt  inclusion  is  particularly  time-demanding  over  regions 
 of  allochthonous  salt  forming  complex  geometries,  such 
 as  overhangs,  teardrops  and  tongues.  The  method 
 proposed  here  aims  to  solve  the  salt  inclusion  in  one  step 
 with  DL,  reducing  the  time  of  the  iterative  process  of  salt 
 flooding.  Our  results  show  that  RTM  migration  using  the 
 sediment  velocity  generates  subsurface  offset  gathers, 
 which  serve  as  the  input  for  a  DL  model  to  identify  the  3D 
 true salt geometry, even for complex geometries. 
 We  showed  that  it  is  possible  to  alleviate  the  memory 
 demands  of  the  3D  convolutional  operators  by  dividing 
 the  migrated  cubes  into  smaller  ones.  And  that 
 superposition  and  a  suitable  windowing  are  able  to 
 conciliate  border  effects.  The  predictions  obtained  present 
 continuous  salt  geometries  in  both  crossline  and  inline 
 directions,  with  some  mistakes  in  deep  portions  of  the 
 model. 

 This  work  is  proof  of  the  concept  of  salt  segmentation 
 over  data  migrated  with  3D  geometries  and  still  requires 
 further  studies  to  be  extended  to  real  seismic  data.  In 
 future  studies,  to  improve  the  generalization  ability  of  the 
 method,  the  expansion  of  the  number  of  volumes  in  the 
 training  data  set  must  be  investigated.  And  also  the 
 inclusion  of  more  subsurface  offset  panels,  probably  with 
 a  cross  variation  of  extended  imaging  condition  lag  in  the 
 x and y direction simultaneously. 

 To  consider  the  application  in  real  data,  it  will  be 
 necessary  to  expand  the  size  of  the  volumes  used  for 
 shot  simulation  and  migration,  increasing  the  depth  of  the 
 interest  geometries.  Another  improvement  to  make  this 
 technology  viable  for  real  data  is  to  apply  a  matching  filter 
 between  the  wavelet  used  for  synthetic  data  generation 
 and the wavelet from real data. 
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