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 Abstract 

 Velocity  model  building  is  a  critical  step  of  seismic 
 processing  which  recently  has  attracted  great  interest  in 
 Deep  Learning  (DL)  applications.  We  propose  in  this  work 
 an  extension  for  3D  models  of  a  previously  investigated 
 method  called  Deep-tomography  (DT).  DT  is  a  technique 
 consisting  of  iteratively  updating  the  velocity  model  by 
 means  of  a  deep  convolutional  neural  network  (U-Net), 
 using  migrated  offset  panels  as  input  data.  The  network  is 
 trained  to  predict  an  appropriate  update  to  be  summed 
 over  the  migration  velocity  model.  Since  the  method  is 
 based  on  migrated  data  as  input,  which  is  in  the  same 
 domain  as  the  desired  output,  its  extension  for  3D  is  more 
 treatable,  allowing  the  division  of  output  and  input  cubes 
 into  smaller  units.  In  this  work,  we  investigated  just  the 
 last  iteration,  which  is  the  more  challenging  one  since  it 
 predicts  the  model  update  with  the  resolution  of  the  true 
 model.  The  results  for  this  iteration  show  that  the  3D 
 method  can  also  predict  faults  and  the  model  interfaces 
 with reasonable accuracy. 

 Introduction 

 An  accurate  and  detailed  velocity  model  is  responsible  for 
 the  quality  and  correctness  of  the  seismic  interpretation. 
 The  process  of  obtaining  the  velocity  model  is  a  complex, 
 human-curated,  and  expensive  task  involving  many  steps 
 of  data  processing,  such  as  Normal  Moveout  Analysis 
 and  Tomography,  until  obtaining  a  good  initial  model  for 
 the Full-Waveform Inversion [1]. 

 In  recent  years,  DL  algorithms  have  been  intensively 
 investigated  in  seismic  problems  [2],  attracting  particular 
 interest  in  velocity  model-building  [3].  The  complete 
 prediction  of  velocity  models  was  initially  proposed  by 
 using  the  raw  seismic  shot  data  to  train  the  network, 
 which  in  turn  predicted  the  velocity  model  that  generated 
 those  input  seismic  shots,  e.g.  [4].  The  results  were  very 
 encouraging;  however,  the  shot-based  approaches  suffer 
 from  generalization  issues  due  to  the  complexity  of  the 
 task  defined  to  be  solved  by  the  neural  network.  Another 
 problem  with  predicting  the  complete  velocity  model  from 

 seismic  shots  is  the  size  of  real  seismic  acquisitions  that 
 is  much  larger  than  what  the  most  modern  GPU  devices 
 could  support.  Recently,  [5]  proposed  a  shot-based 
 approach  for  3D  geometry,  which  tried  to  conciliate  the 
 high  memory  demand  with  the  size  of  the  3D  models  by 
 summing  different  shots.  This  solution  worked  for  simple 
 models,  despite  not  reducing  the  complexity  of  the  data 
 domain  transformation  involved,  and  still  requires  that  the 
 shot  geometries  must  be  regular  and  fixed-spread, 
 covering  all  the  surfaces  to  be  investigated.  This 
 requirement  is  made  in  order  to  conciliate  the  irregularity 
 of  seismic  shots  and  the  geometric  non-correspondence 
 of  this  data  with  the  seismic  images  or  the  velocity 
 models,  which  may  not  be  possible  for  some  acquisition 
 geometries. 

 One  alternative  to  reduce  the  data  size  and  the 
 complexity  of  the  task  is  to  migrate  the  shots  [6,7].  The 
 velocity  chosen  for  migration  can  be  a  constant  velocity 
 [6],  with  the  true  model  being  predicted  in  one  step,  or  a 
 rough  gradient  of  the  true  model,  which  will  be  iteratively 
 updated  until  reaching  a  final  solution  [7].  The  second 
 approach,  called  Deep-Tomography,  is  able  to  generalize 
 to  complex  geological  structures  when  compared  with  a 
 one-step model prediction. 

 The  previously  mentioned  techniques  rely  on  2D 
 applications,  which  are  impossible  to  apply  for  real  data. 
 The  extension  to  3D  simulations  requires  careful  DL 
 design  to  avoid  memory  issues  on  the  GPUs.  This  work 
 presents  a  3D  approach  for  the  Deep-Tomography 
 technique  which  showed  promising  results  for  the 
 synthetic velocity models investigated. 

 Method 

 Deep-tomography  uses  images  migrated  with  RTM  ( 
 Reverse  Time  Migration)  and  a  cross-correlation 
 extended  imaging  condition  [8].  For  the  3D  case,  this 
 imaging condition can be written as 
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 different  image  is  generated,  with  the  property  that  the 
 events  migrated  with  the  accurate  velocity  focalize  to  zero 
 subsurface  offset  value.  It  was  previously  shown  that 
 focalization  can  be  used  as  a  measure  to  correctly  update 
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 the  velocity  model  [9].  To  create  the  subsurface  offset 
 panels,  we  varied  and  independently,  creating  fifteen λ

 𝑥 
λ

 𝑦 
   

 panels  to  use  as  input  for  the  neural  network,  with  the 
 minimum  value  equal  to  zero,  and  the  maximum  value  for 

 =250m  and  for  m  .  The  maximum  subsurface λ
 𝑥 

λ
 𝑦 

=  312 .  5 
 offsets  were  empirically  chosen  in  order  to  capture  the 
 maximum  offset  where  it  was  possible  to  observe 
 coherent events. 

 Supervised  neural  networks  require  a  reasonable  amount 
 of  data  to  be  used  in  the  training  process.  To  have  control 
 of  the  labels,  i.e.,  the  expected  output  of  the  network,  and 
 since  it  is  still  a  proof  of  concept  work,  we  created  a 
 synthetic  data  set  to  evaluate  the  technique.  Our  dataset 
 consists  of  33  synthetic  velocity  models  with  full  coverage 
 acquisition  region  with  2  km  of  depth,  4  km  of  extension  in 
 the  inline  direction,  and  3  km  in  the  crossline  direction. 
 The  spatial  sampling  rate  is  equal  to  12.5  m  for  the  three 
 directions.  We  linearly  extrapolated  the  original  cubes  in 
 order to accommodate the acquisition geometry. 

 Our  shot  simulator  uses  a  finite-difference  wave 
 propagator,  isotropic,  acoustic,  with  second-order  in  time, 
 eight-order  in  space,  and  exponential  attenuation  on  the 
 absorbing  boundaries.  The  acquisition  geometry  defines 
 4800  shots,  with  50  meters  of  increment  in  inline  and 
 crossline  directions.  The  simulated  receivers  are  ten 
 streamers  2000m  long,  spread  with  a  maximum  lateral 
 distance of 500m from the source. 

 To  make  our  synthetic  models  with  high  structural 
 complexity,  we  simulated  a  3D  system  of  deposition  and 
 faulting.  The  deposition  process  occurs  in  packages 
 where  a  sequence  of  5  deposited  layers  configures  a 
 package.  The  algorithm  randomly  chooses  the  thickest  of 
 each  layer  from  a  range  of  possible  values.  After  the 
 complete  deposition  of  a  package,  we  faulted  the 
 deposited  layers  using  a  random  number  of  normal  faults 
 with  random  angles  and  displacements.  Figure  1  presents 
 some examples of velocity models generated. 
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 As  proposed  by  [7],  Deep-tomography  is  an  iteratively 
 supervised  DL  method  using  the  migrated  subsurface 
 offset  panels  as  input  for  a  U-Net.  The  expected  output  is 
 an  update  for  the  velocity  model  used  in  migration.  The 
 technique  relies  on  using  the  network  to  measure  the 
 velocity  error  from  the  migrated  panels  and,  from  this 
 information  generate  the  appropriate  velocity  model 
 updating.  It  has  the  advantage  that  the  input/output  pairs 
 present  the  same  dimension.  In  its  2D  implementation,  it 
 is  necessary  to  run  three  iterations  to  obtain  the  true 
 velocity  from  an  initial  quasi-horizontal  gradient.  At  each 
 iteration,  the  velocity  model  accuracy  and  resolution  are 
 improved. 

 Initially,  for  the  3D  approach,  we  investigated  just  the  final 
 iteration,  which  uses  a  smooth  version  of  the  true  model 
 as  the  migration  model.  This  smooth  version  is  generated 
 by  using  a  Gaussian  filter  with  a  window  size  equal  to  20. 
 The  neural  network's  supervised  training  is  performed  to 
 predict  the  velocity  update  to  be  applied  over  the 
 migration  model  to  reach  the  true  model  which  generated 
 the shots, as exemplified by Figure 2. 

 We  used  a  U-Net  [10]  as  our  network  architecture  of 
 choice;  it  is  composed  of  a  contracting  and  a  symmetric 
 expanding  path,  defining  a  u-shape  form.  Each  step  in  the 
 contracting  path  consists  of  a  series  of  convolutions 
 followed  by  a  pooling  layer.  The  number  of  convolutional 
 filters  increases  at  each  step  and  the  spatial  size 
 decreases  due  to  pooling.  The  expanding  path  does  the 
 opposite,  using  up-convolutions  to  upsample  the  image 
 but  reducing  the  number  of  filters  at  each  step.  During  the 
 expanding  path,  information  from  the  contracting  phase  is 
 concatenated  to  localize  finer  features  better.  In  our 
 implementation,  we  used  three  contracting  steps,  starting 
 with  16  filters  and  doubling  them  at  every  step.  At  each 
 step,  we  apply  two  successive  blocks  of  a  3D 
 Convolutional  layer,  batch  normalization,  and  the 
 Rectified Linear Unit (ReLU) activation. 

 The  U-net  architecture  defines  a  flow  in  which  the  output 
 image  has  the  same  size  as  the  output,  except  for  the 
 number  of  channels.  This  feature  is  extremely  convenient 
 to  our  problem  since  migrated  images  and  models  share 
 the  same  dimensions  except  for  the  number  of 

 subsurface  offsets,  treated  as  channels  of  the  input 
 images. 

 In  order  to  train  our  network,  we  chose  27  out  of  the 
 original  33  synthetic  models  to  be  our  training/validation 
 sets.  We  subdivided  those  into  smaller  sections  of  500m 
 in  the  crossline  direction  and  1km  in  the  inline  direction, 
 with  steps  of  250  and  500m  in  each  direction,  covering 
 the  entire  depth.  This  gives  a  total  of  77  subcubes  per 
 model.  During  the  training  and  validation  phase,  the 
 subcubes  were  treated  as  independent.  However,  since 
 the  borders  of  the  subcubes  suffer  from  the  lack  of 
 information  from  the  neighborhood,  we  chose  the  division 
 with  superposition  to  combine  the  prediction  results  using 
 a  Hann  windowing  [11]  to  balance  the  results  before 
 summing the inline/crossline directions. 

 The  depth  dimension  was  not  divided  to  define  the 
 subcubes  because  the  dependency  of  the  velocity  errors 
 in  the  depth  direction  is  stronger  than  in  the  other 
 directions.  An  error  in  the  top  of  the  velocity  model 
 propagates  to  the  deepest  portion  of  the  model.  With  the 
 proposed  division,  we  guarantee  that  the  network  can 
 correlate  the  top  regions  of  the  migrated  input  images  to 
 the  deeper  ones  and  deal  with  errors  that  could 
 propagate  from  shallow  subsurfaces  to  deeper  ones.  A 
 sensibility  study  would  be  necessary  to  verify  if  the  lateral 
 division  is  reasonable  to  account  for  the  lateral  spreading 
 of the velocity errors. 

 Results 

 The  network  was  trained  for  130  epochs,  using  the  Adam 
 optimizer  [12]  with  a  learning  rate  of  0.0001,  and  a  Mean 
 Squared  Error  (MSE)  as  the  loss  function.  As  was 
 previously  discussed  in  the  Deep-tomography  2D 
 implementation  [7],  the  convolutional  kernel  size  is  an 
 important  parameter  to  guarantee  the  accuracy  of  the 
 predictions,  due  to  the  long-range  effects  of  the  velocity 
 errors  over  the  migrated  images.  We  tested  three 
 convolutional  kernel  shapes:  two  symmetric  ones  with  all 
 filter  sizes  equal  to  3  or  9  and  an  asymmetric  one  with 
 kernel  sizes  equal  to  (3,  9,  3),  with  the  largest  dimension 
 corresponding  to  depth.  The  resulting  MSE  for  the 
 validation  sample  at  each  epoch  for  the  three  different 
 kernel  shapes  is  shown  in  Figure  3.  As  was  previously 
 mentioned,  it  is  expected  the  depth  dependency  on  the 
 velocity  errors  to  have  a  long-range  reach,  and  better 
 results  using  the  largest  kernel  size  only  in  the  depth 
 dimension are in agreement with this observation. 

 We  chose  the  weights  when  the  validation  loss  was 
 lowest  as  the  best-trained  U-Net  to  make  the  predictions 
 for  each  sample  in  our  test  set.  We  divided  the  3D  models 
 in  the  same  way  as  in  the  training  phase,  this  time 
 keeping  track  of  the  origin  of  the  subsets  to  reassemble 
 the  velocity  models.  When  patching  together  the 
 predictions,  as  previously  mentioned,  we  used  a  Hann 
 window  in  the  crossline  and  inline  directions  in  the  areas 
 of overlap between subsets. 

 The  results  for  two  of  the  synthetic  velocity  models  can  be 
 seen  in  Figure  4.  We  plotted  for  each  result  the  migration 
 model,  the  predicted  model  from  DT,  and  the  true  model. 
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 As  previously  mentioned,  the  DT  result  is  obtained  by 
 summing the U-Net output over the migration model.   

 Figure  4  shows  predictions  with  a  reasonable  agreement 
 with  the  true  models.  The  network  predictions  were  able 
 to  recover  the  layer’s  contrasts  present  in  the  true  model, 
 also recovering the lateral variations defined by the faults. 

 Conclusions 

 This  work  presented  the  initial  studies  about  the 
 extension  of  Deep-Tomography  to  3D  data.  Our  work 
 presents  the  advantages  of  a  DL  image-based  approach 
 over  a  shot-based  one,  by  the  flexibility  of  splitting  the 
 input  data  in  the  most  suitable  and  memory-saving 
 configuration,  due  to  the  close  correspondence  between 
 the input and output data. 

 The  initial  results  for  the  final  interaction,  which  leads  the 
 model  to  the  true  model  presented  reasonable  accuracy 
 with  the  expected  result.  Probably  better  results  could  be 
 achieved  using  a  larger  training  data  set.  Further  studies 
 are  required  to  investigate  the  technique  as  a  potential 
 approach  for  real  data,  as  the  application  of  the  complete 
 deep-tomography  flow,  which  iteratively  updates  a  vertical 
 gradient  model,  with  no  structures  to  the  true  model.  It  is 
 also  important  to  investigate  alternative  network 
 architectures  and  loss  functions.  Besides,  it  is  necessary 
 to  increase  the  structural  complexity  of  the  generated 
 models  by,  for  example,  including  folding  and  erosion, 
 and also the size of the migrated cubes. 

 One  important  advantage  of  DL  methods  for  the  velocity 
 model  flow  is  the  potential  to  speed  up  the  results  since 
 once  the  neural  network  is  trained,  the  results  are 
 obtained  almost  instantaneously.  Deep-tomography 
 approach  requires  the  migration  of  the  data,  but  after 
 migration,  the  model  updating  follows  an  automatic  and 
 fast flow. 
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