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Abstract

The present work aims to evaluate the hydrostatic pressure
variation in a seismic reservoir characterized by a model
of curved layers that presents regions of synclinals that,
by stressing the upper layers, cause deformation in them
over millions of years. These synclinal regions are natural
traps that have the ability to confine fluids, provided
they have porosity, and in this process, the fluids are
subjected to hydrostatic pressures. The determination
of the hydrostatic pressures to which these fluids are
submitted is possible because it is related to the variation
in velocities of the seismic waves P and S that propagate
inside the reservoirs, which in turn are related to the elastic
and petrophysical parameters of the rocks, such as the
shear modulus and the incompressibility modulus. From
the determination of these parameters, one can determine
variations in the hydrostatic pressure of fluids and plot the
results on color maps. The importance of this study lies in
the fact that these pressures cause folding in these layers,
explaining the presence of curved layers in complex media
and also the presence of hydrocarbons in these reservoirs.
The initial step in the processing flow of this work was
to create synthetic models that depict the geology of the
curved layers and assign constant density values and P
and S wave velocities for each layer. The software used
to create these geological models is the free seismic data
processing software called Seismic Un*x, developed by
Central Wave Processing (CWP) at the Colorado School
of Mines

Introduction

Seismic method is the geophysical method that uses the
propagation of seismic waves in subsurface to obtain
data and images of its complex geological features
(ROKSANDIC (1978); AKI & RICHARDS (1980); SHERIFF
& GELDART (1982)). Hydrocarbon exploration is the most
important application of seismic, and in this regard, many
studies have been published to construct theoretical rock
models that can physically represent complex real models
(GASSMANN (1951); BIOT (1956a); BIOT (1956b)). In
these studies, the physical and petrophysical properties of
rocks have been the subject of study to make it possible
to infer values of elastic rock properties when saturated by
fluids. The presence of folds in the buckling sedimentary
layers, in response to compressive forces, creates a natural

trap for hydrocarbon confinement, with the possibility of
anticlinal and sinclinal formations occurring, depending on
the rock properties and the magnitude and direction of the
forces applied. The most important example is a dome,
which is an anticlinal structure featuring a circular or oval
overhang of rock layers. The layers on the flanks of a
dome surround it at a central point and dip radially from
this point, and certain domes can be attributed to bodies
of less dense material pushing the overlying sediments
upward. As the seismic wave beam strikes the interface
separating the fluid contained within these structures, it
deflects and indicates the change in velocity and density
of the medium. The observation of the decrease in P-
wave velocity indicates that the new medium in which
the seismic wave is propagating is less dense than the
previous medium, and may even be fluid.

The relationships between applied forces and deformations
are expressed in terms of the concepts of stress and strain
(TELFORD et al. (1990)).

Stress

When a force is applied to an area element, stress is
defined as force per unit area to which it is applied. If the
force varies from point to point, the stress also varies and
its value is given by:

σi j = lim
A j→0

Fi

A j
(i, j = 1,2,3).

The stress is normal or pressure when the force is
perpendicular to the area; and shear or shear when the
force is tangential to the area element. Normal stresses
are indicated by σi j and shear stresses by τi j.

When two subscripts are equal (like σxx), the stress is said
to be normal stress; and when the subscripts are different
(like τxy) the stress is said to be shear or shear.

The nine stress components completely define the state
of stress to which the body is subjected and can be
conveniently described by the stress matrix:

σi j =

 σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


If the forces acting on the body are compensated so
that they do not cause rotations, this matrix is symmetric
(i.e. σxy = σyx, σxz = σzx, σyz = σzy, ) and contains only
independent elements.

This occurs when the medium is in static equilibrium. In
this case, the forces must be balanced. This medium
has three stresses σxx, τyx and τzx acting that must be
equal and opposite to the corresponding stresses acting
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in the opposite direction, with similar relationships to the
remaining four faces. In addition, a pair of shear stresses,
such as τyx, constitute a pair tending to rotate the element
about z. The magnitude of the pair is the moment, defined
by:

F×b = (τyxdydz)dx

where F is the magnitude of the force and b is the arm.

If we consider the stresses on the other four faces, we
conclude that this pair is opposed only by the pair τxy
with magnitude (σxydxdz)dy. Since this element is in
equilibrium, the total momentum must be zero; so τxy = τyx.
In general, in the case of static equilibrium:

σi j = σ ji

Strain

When an elastic body is subjected to stresses, variations
occur in its dimensions and shape. These variations,
which are called deformations. These deformations can
be longitudinal or shear. Deformations are indicated by εi j.

Longitudinal strains are deformations produced by the
components of the normal stresses σxx, σyy and σzz. The
longitudinal strains are εxx, εyy and εzz.

Shear strains are strains produced by the components of
the shear stresses σxy, σxz and σyz. The shear strains are
εxy, εxz and εyz.

The longitudinal and shear strains define a symmetric 3×3
matrix, called the strain matrix.

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
=

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (i, j = 1,2,3)

Poisson’s ratio

In elastic behavior the deformations εyy and εzz are not
independent of εxx.

The elongation in the direction parallel to x is accompanied
by a contraction in the directions parallel to the yy and zz
axes (the latter is not represented in the figure, as it only
represents what is happening in the x− y plane). The
deformations εyy and εzz have an opposite sign, but are
proportional to the extension εxx, being given by:

εyy =−νεxx εzz =−νεxx (1)

ν =−
εyy

εxx
=− εzz

εxx
(2)

The proportionality constant ν is called Poisson’s ratio.

Rotation tensor

In addition to stresses and strains, the body is subject to

rotations about the three axes (x, y, z), which are given by:

θx =
1
2

(
∂w
∂y
− ∂v

∂ z

)
Rotation about the x-axis

θy =
1
2

(
∂u
∂ z
− ∂w

∂x

)
Rotation about the y-axis

θz =
1
2

(
∂v
∂x
− ∂u

∂y

)
Rotation about the z-axis

The rotation tensor is described in a similar way to the
strain tensor by the components of the rotation in the form:

θi j =
1
2

(
∂u j

∂xi
− ∂ui

∂x j

)
=

 θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

 (i, j = 1,2,3)

In the matrix of rotations, x1 = x, x2 = y, x3 = z, u1 = u,
u2 = v and u3 = w. Notice that the tensor of rotations is
not symmetric.

Dilatation

The variations in dimensions given by normal stresses
result in volume variations; the volume variation per unit
area is called dilation and is represented by ∆.

∆ =
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= εxx + εyy + εzz

Hooke’s Law

Hooke’s law states that a given stress is directly
proportional to the strain produced. In general, Hooke’s law
leads to complicated relationships, but when the medium
is isotropic, that is, when its properties do not depend
on direction, it can be expressed in the following form
(TELFORD et al. (1990))

σi j = λ
′
∆δi j +2µεi j (i = 1, 2, 3) (3)

where δi j is called the Kroenecker symbol, defined by:

δi j =

{
1 se i = j
0 se i 6= j

The quantities λ ′ and µ are known as Lamé constants.

If i 6= j the Eq.(3) reduces to σi j = 2µεi j and we write εi j =
σi j/2µ, it is evident that εi j is smaller the larger µ is. So
µ is a measure of resistance to shear deformation and is
called the stiffness or shear modulus (since i 6= j).

Elastic Constants

No intervalo de deformação elástica a lei de Hooke nos
diz que existe uma relação linear entre a tensão e a
deformação, sendo que o quociente entre estas duas
grandezas define uma constante elástica. Como por sua
vez as deformações já são dadas por quocientes entre
comprimentos (por isso são adimensionais) as constantes
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elásticas têm as mesmas dimensões que a tensão (N/m2).
As constantes elásticas, definidas para diferentes tipos de
deformações são, o módulo de Young, o coeficiente de
rigidez e o módulo de volume (“bulk modulus”).

Young modulus

Young’s modulus (E) is defined from the longitudinal strain.
Each longitudinal strain is proportional to the existing
normal stress component, i.e:

σxx = Eεxx, σyy = Eεyy, σzz = Eεzz

E =
σxx

εxx
=

σyy

εyy
=

σzz

εzz

Stiffness Modulus

The stiffness modulus µ is defined from the shear or shear
deformation. Each shear deformation is proportional to the
existing shear stress component, i.e:

σxy = µεxy, σxz = µεxz, σyz = µεyz

µ =
σxy

εxy
=

σxz

εxz
=

σyz

εyz

From the previous expression we have:

σi j =


σxy = µεxy

σyz = µεyz

σzx = µεzx

Pressure Field

The construction of a pressure field is important for
analyzing low pressure zones, which are favorable for fluid
accumulation. The vertical and horizontal pressures are
key parameters, also called invariant scalars of the stress
tensor. Rewriting the stress-strain relationship for the
isotropic medium from Eq.(3) one has:

σi j = λ
′
∆δi j +2µεi j (4)

∆ =
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= εxx + εyy + εzz

Considering Eq.(4) we calculate the normal stresses in the
form of

σxx = λ
′
∆δxx +2µεxx

σyy = λ
′
∆δyy +2µεyy

σzz = λ
′
∆δzz +2µεzz = (λ +2µ)εzz

where δxx = δyy = δzz = 1, and the preceding expressions
take the forms:

σxx = λ
′
∆+2µεxx

σyy = λ
′
∆+2µεyy

σzz = λ
′
∆+2µεzz = (λ +2µ)εzz (5)

εzz =
1

λ +2µ
σzz

The stress is non-hydrostatic even in horizontal layer media
subject only to compaction due to vertical pressure without
horizontal displacement, in such cases the vertical stress
is defined as equal to the load in the following form

dσzz

dz
= ρ(z)g(z)

dσzz = ρ(z)g(z)dz∫
dσzz(z) =

∫ z

z=0
ρ(z)g(z)dz

σzz(z) =
∫ z

z=0
ρ(z)g(z)dz

For z = 0, you get the vertical pressure at the surface of the
layer, given by:

σzz(0) = σzz = ρgz = Pz = P0 (6)

The corresponding horizontal pressure is described in the
form:

σxx = Px = P0(1−2γ
2) (7)

In Eq.(7), the constant γ is given by the ratio of the S- and
P-wave velocities Landau (1988).

γ =
β

α
e σxx = σyy. (8)

The overburden pressure is one third of the sum of the
vertical and horizontal stresses, considering the stress
relationships in Eq.(5), if the vertical stresses are equal,
the loading or hydrostatic pressure is simply the pressure
of the overlying layers Sibiryakov (2004):

P =
σxx +σyy +σzz

3

P =
1
3

(
3λ +2µ

1

)
εzz

P = P0

(
1− 4

3
γ

2
)

(9)

Data and Methods

The model used in this work was generated using the free
software Seismic Un*x (SU) Cohen & Stockwell (2005)
with 10 layers and that presents anticlinal and synclinal
geological structure, presenting fault regions, as illustrated
in Figure 1.
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Figure 1 – Curved Layer Model.

Because the model is marine, it is natural that the P-wave
velocity of the water would be in a range between 1400 to
1500 m/s. As it is referred in the literature, the occurrence
of basin embayment around 6 km depth. Thus factors such
as the deposition of sedimentary layers, natural vertical
compression or the weight of each layer itself, the influence
of tectonics that is often manifested by a compression or
distension of the stress field and that causes a deformation
that can occasionally give rise to the creation of other
structures.

The above model was made using SU’s trimodel function
that uses a triangularization using the vagarosity (sloth),

and this vagarosity is calculated by s =
1
v2 . The physical

parameters of this model are shown in Table 1.

Layers Vagarosities Vp(m/s)

1 0.44 1507
2 0.39 1601
3 0.36 1666
4 0.25 2000
5 0.20 2236
6 0.16 2500
7 0.09 3333
8 0.06 4082
9 0.04 5000

10 0.03 5773

Tabel 1 – P-wave velocity gradient in m/s for each layer.

In this way it is possible to determine several physical
parameters that help in locating a possible petroleum
system (generator: migration route (when it exists)
reservoir; sealant), and that help later through the
calculation of each of these parameters for the respective
mesh element. The parameters that were used in this work
were:

• Shear modulus (µ);

• First Lamé Parameter (λ );

• Relationship between velocities S e P (γ);

• RMS S-wave velocity (V srms);

• RMS P-wave velocity (V prms);

• Vertical pressure Px;

• Horizontal pressure Pz;

• Hydrostatic pressure P;

Results

Figure 2 shows the interval velocity model of the S waves,
varying with velocity from 0 m/s for the upper layer to a
velocity of 3800 m/s for the lower layer. In this figure, it can
be seen that the S-wave velocity is zero at layer 1, as it
does not propagate in the water. S-wave velocities are not
as widely used to identify petroleum systems as P-wave
velocity.

Figure 2 – S-wave velocity distribution.

On the other hand, Figure 3 shows the interval velocity
model of the P waves, it is observed that the velocities of
the layers vary from the top layer with a velocity of 1500
m/s, to the bottom layer with a velocity of 5500 m/s. The
velocity of this type of wave tends to increase with depth.
Typically the velocity of the P-wave in a reservoir or in a
generating layer (provided it has the hydrocarbon fluid) is
around 2200 m/s.

Figure 3 – P-wave velocity distribution.

In general, all layers tend to show a large lateral continuity,
but an anticlinal structure is observed at coordinate
(5,2) in Figure 1 that occurs due to vertical upward
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pressure from its lower layer. None of the layers is
completely horizontal, and this is due to the existence
of high strain rates, probably induced by the occurrence
of horizontal compressional forces arising from active
tectonics, especially around the 3 km extent, as can be
confirmed through the graphs of the pressure, and its
horizontal and vertical derivatives.

Density is the ratio between the mass and the volume
of the soil sample. In this work, density was defined as
an input parameter through a vector, containing a set of
values compatible with the geological-geophysical model
presented in Figure 4. It is also worth noting that the
density increases with depth.

Figure 4 – Density distribution.

The shear modulus is calculated using the equation (10):

µ = v2
s ρ (10)

It is noted that to perform the 5 calculation, it is necessary
to know the set of values of the S-wave velocity and the 5
density of each layer. This value tends to increase equally
with the depth of investigation (See Figure 5).

Figure 5 – Range of shear modulus values.

To calculate the Lambda parameter, you need to know the
values of three parameters for each layer: P-wave velocity,
ρ and µ. Therefore, λ can be obtained by the form (11):

λ = v2
pρ−2µ (11)

This parameter can take either positive or negative values,
as shown in Figure 6.

Figure 6 – Range of values of λ .

The γ parameter is obtained by the ratio between the
S-wave velocity and the P-wave velocity (Eq.7), and is
therefore dimensionless - Figure 7. As the value of the
S-wave velocity parameter is less than the P-wave velocity,
the γ value is respectively less than 1.

Figure 7 – γ value range.

For reflection seismic acquisitions where the sedimentary
package geometry is practically horizontal between layers
and very extensive, it is better to separate and isolate the
S-wave arrival time in each of the receivers, due to the
reduction of the overlap that appears at the end of the
acquisition.

Since the value of the S-wave velocity parameter is
practically absent in liquids, it is usually easier to define
the interface between the solid material and the liquid, it is
easier to define the interface between layer 1 (Vs = 0 m/s)
and layer 2 (Vs = 2200 m/s). Figure 8 shows the result of
the RMS velocity calculation for S-waves.

The P-wave RMS velocity parameter (see Figure 9) is one
of the main parameters, and is used to perform migration
in seismic sections. To calculate this parameter, it was
necessary to provide as input variable the S-wave velocity
for each layer.

Comparing the values of the RMS velocity parameters of
the P-wave with the S-wave, for the same layer the former
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Figure 8 – Mean squared velocity of the S wave.

value is always higher than the latter value.

Figure 9 – Mean squared velocity of the wave P.

The horizontal pressure parameter is calculated using the
equation (12):

Px = γ
2Pz, (12)

where Pz is the vertical pressure for each layer. The value of
Px is always greater than or equal to 0, being 0 for example
in the case when the medium is a fluid. The graph in
Figure 10 shows the behavior of the horizontal pressure for
each layer of the synthetic model composed of 10 layers
presented at the beginning of this section.

Figure 10 – Horizontal pressure.

The calculation of the vertical pressure parameter will be
calculated in two steps. The first step will be done for layer
1 as follows (13):

Pz = ρdz, (13)

where ρ is the density and dz is an increment factor on
the z-axis (layer thickness). And the second step will be
performed by a pressure accumulation from layer 2, i.e.,
the vertical pressure of layer 2 will depend on the vertical
pressure of layer 1 and so on, so we get the following
equation (14):

Pz = (Pz−1)+ρdz, (14)

The graph in Figure 11 shows the vertical pressure
behavior for each layer of the model in Figure 1.

Figure 11 – Vertical pressure.

Hydrostatic pressure is a very important parameter in
predicting low pressure zones, usually indicative to
constitute fluid generating and/or storing lithologies. Fluid
generating and/or storing lithologies. The hydrostatic
pressure parameter is calculated according to the equation
12 in the previous section.

The information contained in the graph in Figure 12 shows
a small variation in the behavior of hydrostatic pressure
within each of the layers of the Figure 1. Thus it is not
surprising that in the interior of the layers, the values of
the hydrostatic pressure parameter increase with depth, so
this explains the color gradient within each of the defined
layers.

Figure 12 – Hydrostatic Pressure.
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Discussion and Conclusions

The present work aimed to calculate the elastic parameters
of geological media subjected to the action of tectonic
forces from the concepts of the Theory of Elasticity. It
is observed that in Figure 3 the values of the p-wave
velocities increase with depth, with the exception of the
region at the top of the anticlinal structure, which has
velocities above 4000 m/s. We observe that in Figure
5 the µ values are continuous, except in the region of
the top of the anticlinal structure, situated at 2 km depth.
This anomaly is explained due to the force applied by
the upper layer on the walls of the top of the anticlinal.
As the values of λ depend on the values of µ, it is
also observed in Figure 6 an anomaly in the top of the
anticlinal, being the value in this region smaller than in
the neighborhood, due to the fact that the value of λ

decreases as the value of µ increases. Analyzing Figure
10 one notices that the horizontal pressure in the less
curved layers is lower than in the layers that present
significant curvature. On the other hand, in the regions
where the layers present greater curvatures, the horizontal
pressure presents greater continuity, differentiating well
these layers. Regarding the vertical pressure, Figure 11,
it is naturally observed that its value increases as the
depth of the layer increases and, moreover, the vertical
pressure in the regions of anticlines is lower than in its
neighborhood, not allowing a good differentiation of the
region just below the anticlines. Figure 12 shows the values
of the hydrostatic pressure inside the layers. It can be
seen that these values increase with depth and allow for
very good differentiation between the different layers, with
the exception of the regions at the tops of the anticlines.
From these observations, it was possible to identify the low
pressure zones of the curved layer model described in the
paper.
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