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Abstract

Velocity model building is a critical step of seismic
processing which recently has attracted great interest in
Deep Learning (DL) applications. We propose in this work
an extension for 3D models of a previously investigated
method called Deep-tomography (DT). DT is a technique
consisting of iteratively updating the velocity model by
means of a deep convolutional neural network (U-Net),
using migrated offset panels as input data. The network is
trained to predict an appropriate update to be summed
over the migration velocity model. Since the method is
based on migrated data as input, which is in the same
domain as the desired output, its extension for 3D is more
treatable, allowing the division of output and input cubes
into smaller units. In this work, we investigated just the
last iteration, which is the more challenging one since it
predicts the model update with the resolution of the true
model. The results for this iteration show that the 3D
method can also predict faults and the model interfaces
with reasonable accuracy.

Introduction

An accurate and detailed velocity model is responsible for
the quality and correctness of the seismic interpretation.
The process of obtaining the velocity model is a complex,
human-curated, and expensive task involving many steps
of data processing, such as Normal Moveout Analysis
and Tomography, until obtaining a good initial model for
the Full-Waveform Inversion [1].

In recent years, DL algorithms have been intensively
investigated in seismic problems [2], attracting particular
interest in velocity model-building [3]. The complete
prediction of velocity models was initially proposed by
using the raw seismic shot data to train the network,
which in turn predicted the velocity model that generated
those input seismic shots, e.g. [4]. The results were very
encouraging; however, the shot-based approaches suffer
from generalization issues due to the complexity of the
task defined to be solved by the neural network. Another
problem with predicting the complete velocity model from

seismic shots is the size of real seismic acquisitions that
is much larger than what the most modern GPU devices
could support. Recently, [5] proposed a shot-based
approach for 3D geometry, which tried to conciliate the
high memory demand with the size of the 3D models by
summing different shots. This solution worked for simple
models, despite not reducing the complexity of the data
domain transformation involved, and still requires that the
shot geometries must be regular and fixed-spread,
covering all the surfaces to be investigated. This
requirement is made in order to conciliate the irregularity
of seismic shots and the geometric non-correspondence
of this data with the seismic images or the velocity
models, which may not be possible for some acquisition
geometries.

One alternative to reduce the data size and the
complexity of the task is to migrate the shots [6,7]. The
velocity chosen for migration can be a constant velocity
[6], with the true model being predicted in one step, or a
rough gradient of the true model, which will be iteratively
updated until reaching a final solution [7]. The second
approach, called Deep-Tomography, is able to generalize
to complex geological structures when compared with a
one-step model prediction.

The previously mentioned techniques rely on 2D
applications, which are impossible to apply for real data.
The extension to 3D simulations requires careful DL
design to avoid memory issues on the GPUs. This work
presents a 3D approach for the Deep-Tomography
technique which showed promising results for the
synthetic velocity models investigated.

Method

Deep-tomography uses images migrated with RTM (
Reverse Time Migration) and a cross-correlation
extended imaging condition [8]. For the 3D case, this
imaging condition can be written as
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different image is generated, with the property that the
events migrated with the accurate velocity focalize to zero
subsurface offset value. It was previously shown that
focalization can be used as a measure to correctly update
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the velocity model [9]. To create the subsurface offset
panels, we varied and independently, creating fifteenλ

𝑥
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𝑦
 

panels to use as input for the neural network, with the
minimum value equal to zero, and the maximum value for
=250m and for m. The maximum subsurfaceλ

𝑥
λ

𝑦
= 312. 5

offsets were empirically chosen in order to capture the
maximum offset where it was possible to observe
coherent events.

Supervised neural networks require a reasonable amount
of data to be used in the training process. To have control
of the labels, i.e., the expected output of the network, and
since it is still a proof of concept work, we created a
synthetic data set to evaluate the technique. Our dataset
consists of 33 synthetic velocity models with full coverage
acquisition region with 2 km of depth, 4 km of extension in
the inline direction, and 3 km in the crossline direction.
The spatial sampling rate is equal to 12.5 m for the three
directions. We linearly extrapolated the original cubes in
order to accommodate the acquisition geometry.

Our shot simulator uses a finite-difference wave
propagator, isotropic, acoustic, with second-order in time,
eight-order in space, and exponential attenuation on the
absorbing boundaries. The acquisition geometry defines
4800 shots, with 50 meters of increment in inline and
crossline directions. The simulated receivers are ten
streamers 2000m long, spread with a maximum lateral
distance of 500m from the source.

To make our synthetic models with high structural
complexity, we simulated a 3D system of deposition and
faulting. The deposition process occurs in packages
where a sequence of 5 deposited layers configures a
package. The algorithm randomly chooses the thickest of
each layer from a range of possible values. After the
complete deposition of a package, we faulted the
deposited layers using a random number of normal faults
with random angles and displacements. Figure 1 presents
some examples of velocity models generated.
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As proposed by [7], Deep-tomography is an iteratively
supervised DL method using the migrated subsurface
offset panels as input for a U-Net. The expected output is
an update for the velocity model used in migration. The
technique relies on using the network to measure the
velocity error from the migrated panels and, from this
information generate the appropriate velocity model
updating. It has the advantage that the input/output pairs
present the same dimension. In its 2D implementation, it
is necessary to run three iterations to obtain the true
velocity from an initial quasi-horizontal gradient. At each
iteration, the velocity model accuracy and resolution are
improved.

Initially, for the 3D approach, we investigated just the final
iteration, which uses a smooth version of the true model
as the migration model. This smooth version is generated
by using a Gaussian filter with a window size equal to 20.
The neural network's supervised training is performed to
predict the velocity update to be applied over the
migration model to reach the true model which generated
the shots, as exemplified by Figure 2.

We used a U-Net [10] as our network architecture of
choice; it is composed of a contracting and a symmetric
expanding path, defining a u-shape form. Each step in the
contracting path consists of a series of convolutions
followed by a pooling layer. The number of convolutional
filters increases at each step and the spatial size
decreases due to pooling. The expanding path does the
opposite, using up-convolutions to upsample the image
but reducing the number of filters at each step. During the
expanding path, information from the contracting phase is
concatenated to localize finer features better. In our
implementation, we used three contracting steps, starting
with 16 filters and doubling them at every step. At each
step, we apply two successive blocks of a 3D
Convolutional layer, batch normalization, and the
Rectified Linear Unit (ReLU) activation.

The U-net architecture defines a flow in which the output
image has the same size as the output, except for the
number of channels. This feature is extremely convenient
to our problem since migrated images and models share
the same dimensions except for the number of

subsurface offsets, treated as channels of the input
images.

In order to train our network, we chose 27 out of the
original 33 synthetic models to be our training/validation
sets. We subdivided those into smaller sections of 500m
in the crossline direction and 1km in the inline direction,
with steps of 250 and 500m in each direction, covering
the entire depth. This gives a total of 77 subcubes per
model. During the training and validation phase, the
subcubes were treated as independent. However, since
the borders of the subcubes suffer from the lack of
information from the neighborhood, we chose the division
with superposition to combine the prediction results using
a Hann windowing [11] to balance the results before
summing the inline/crossline directions.

The depth dimension was not divided to define the
subcubes because the dependency of the velocity errors
in the depth direction is stronger than in the other
directions. An error in the top of the velocity model
propagates to the deepest portion of the model. With the
proposed division, we guarantee that the network can
correlate the top regions of the migrated input images to
the deeper ones and deal with errors that could
propagate from shallow subsurfaces to deeper ones. A
sensibility study would be necessary to verify if the lateral
division is reasonable to account for the lateral spreading
of the velocity errors.

Results

The network was trained for 130 epochs, using the Adam
optimizer [12] with a learning rate of 0.0001, and a Mean
Squared Error (MSE) as the loss function. As was
previously discussed in the Deep-tomography 2D
implementation [7], the convolutional kernel size is an
important parameter to guarantee the accuracy of the
predictions, due to the long-range effects of the velocity
errors over the migrated images. We tested three
convolutional kernel shapes: two symmetric ones with all
filter sizes equal to 3 or 9 and an asymmetric one with
kernel sizes equal to (3, 9, 3), with the largest dimension
corresponding to depth. The resulting MSE for the
validation sample at each epoch for the three different
kernel shapes is shown in Figure 3. As was previously
mentioned, it is expected the depth dependency on the
velocity errors to have a long-range reach, and better
results using the largest kernel size only in the depth
dimension are in agreement with this observation.

We chose the weights when the validation loss was
lowest as the best-trained U-Net to make the predictions
for each sample in our test set. We divided the 3D models
in the same way as in the training phase, this time
keeping track of the origin of the subsets to reassemble
the velocity models. When patching together the
predictions, as previously mentioned, we used a Hann
window in the crossline and inline directions in the areas
of overlap between subsets.

The results for two of the synthetic velocity models can be
seen in Figure 4. We plotted for each result the migration
model, the predicted model from DT, and the true model.
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As previously mentioned, the DT result is obtained by
summing the U-Net output over the migration model.

Figure 4 shows predictions with a reasonable agreement
with the true models. The network predictions were able
to recover the layer’s contrasts present in the true model,
also recovering the lateral variations defined by the faults.

Conclusions

This work presented the initial studies about the
extension of Deep-Tomography to 3D data. Our work
presents the advantages of a DL image-based approach
over a shot-based one, by the flexibility of splitting the
input data in the most suitable and memory-saving
configuration, due to the close correspondence between
the input and output data.

The initial results for the final interaction, which leads the
model to the true model presented reasonable accuracy
with the expected result. Probably better results could be
achieved using a larger training data set. Further studies
are required to investigate the technique as a potential
approach for real data, as the application of the complete
deep-tomography flow, which iteratively updates a vertical
gradient model, with no structures to the true model. It is
also important to investigate alternative network
architectures and loss functions. Besides, it is necessary
to increase the structural complexity of the generated
models by, for example, including folding and erosion,
and also the size of the migrated cubes.

One important advantage of DL methods for the velocity
model flow is the potential to speed up the results since
once the neural network is trained, the results are
obtained almost instantaneously. Deep-tomography
approach requires the migration of the data, but after
migration, the model updating follows an automatic and
fast flow.
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