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Abstract 

Estimating accurate acoustic impedance models has 
been an essential routine for reservoir characterization 
over the last two decades. In most cases, the procedure 
relies on minimizing an objective function. We presented 
a deep learning-based approach for seismic impedance 
inversion using a closed-loop convolutional neural 
network (CNN). This architecture employs a cycle-
consistency loss to learn the context of training data 
better and produce high-reliable outputs. We trained our 
network with pseudo-wells simulating intercalations 
between sandstones, shale, and carbonates. The trained 
CNN was applied for seismic inversion in the Eocene and 
Paleocene intervals of the New Jubarte Field, Campos 
Basin, Brazil. The results show that the CNN-based 
inverted model presents high resolution and lateral 
continuity, matching the well-log data with a linear 
correlation coefficient of 0.75. This deep-learning-based 
seismic impedance approach performed better than the 
traditional model-based inversion, indicating that our 
proposal can be a useful alternative and steadily 
employed for quantitative seismic interpretation. 

Introduction 

Acoustic impedance is a crucial parameter for reservoir 
characterization as it directly correlates to reservoir 
properties such as porosity, fluid saturation, and facies. 
The estimation of acoustic impedance from seismic 
reflection data improves the interpretation and prediction 
of petroelastic properties. Over the last decades, several 
methods have been developed to perform deterministic 
seismic impedance inversion (Russel, 1988; Tarantola, 
2005). However, traditional seismic inversion approaches 
based on the convolutional model suffer from problems 
like non-linearity, non-uniqueness, and ill-conditioning. In 
addition, challenges remain due to inherent limitations of 
the seismic method, such as noise, limited bandwidth, 
numerical approximations, and physical assumptions in 
forward modeling (Tarantola, 2005). This results in 
unstable and uncertain inverted models. 

Deep learning is a field of machine learning that employs 
deep neural networks to learn complex functions from 
data. Deep-learning routines are used in computer vision, 
where the networks can extract representative features 

from data (Goodfellow et al., 2016). Given its versatility, 
deep learning recently gained popularity in geophysics to 
solve several tasks such as the identification of faults and 
horizons (Wu et al., 2019; Vizeu et al., 2022), facies 
classification (Vizeu et al., 2021), porosity modeling (Allo 
et al., 2021), and seismic impedance inversion (Biswas et 
al., 2019; Das et al., 2019; Ge et al., 2022). One of the 
breakthroughs of deep learning for seismic inversion is 
the possibility of handling non-linear mapping operators 
between seismic amplitude data and acoustic impedance 
without assuming a unique wavelet in the linear 
convolutional model. 

For many years, the multilayer perceptron (MLP) 
dominated the field of seismic inversion problems using 
machine learning (Röth and Tarantola, 1994) mainly due 
to computational limitations of more complex 
architectures like the convolutional neural network (CNN) 
for solving large-scale problems. CNNs are more robust 
than MLPs as they account for local connectivity and are 
easier to train. However, the lack of training data is a 
challenging step in deep learning-based methods for 
seismic inversion. To overcome that, the procedure can 
include the strategy of creating pseudo-logs of acoustic 
impedance based on geostatistics and performing the 
forward modeling through the 1D convolutional model to 
train the CNNs (Biswas et al., 2019; Ge et al., 2022). The 
pseudo-wells bring realistic high-resolution information to 
the inversion process. 

The most common approach for seismic impedance 
inversion using deep learning is by designing a neural 
network for regression and adopting the mean squared 
error (MSE) as the loss function to train it. However, the 
MSE loss only measures the pixel-wise difference 
between the network output and a given label, 
disregarding structural differences between the two 
images, leading to smooth results. As an alternative, Zhu 
et al. (2017) introduced the cycle-consistency loss for 
image-to-image translation in the CycleGAN. This loss 
function overcomes the main limitations of the MSE loss 
and brings more robustness to seismic inverse problems. 
The CNN trained with the cycle-consistency loss function 
is called closed-loop CNN. 

Here we perform a seismic impedance inversion using a 
1D CNN trained with the cycle-consistency loss function. 
The closed-loop CNN combines a subnetwork for 
inversion and another for forward mapping. The model is 
trained with labeled data from pseudo-wells and 
unlabeled data randomly extracted from the application 
dataset. We evaluate the performance of our model for 
the characterization of turbidite reservoirs of the Eocene 
and Paleocene in the New Jubarte Field, Campos Basin, 
Brazil. 
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Theory and methodology 

This section describes the steps to build the training and 
testing datasets using pseudo-wells. We also explore the 
architecture of the closed-loop CNN and the training and 
testing metrics. 

Seismic forward modeling 

The post-stack convolutional model gives the linear 
relationship between acoustic impedance and the zero-
offset seismic data. A seismic trace can be modeled by 
the convolution of a wavelet with a reflection coefficient 
series in the time domain. In turn, the reflection coefficient 
is the response of the subsurface to the contrasts of 
acoustic impedance between overlapping layers: 

 

 

(1) 

where  and  are the acoustic impedance of 

the incident and transmitted ray side, respectively. 
Considering a weak-contrast medium with  and 

discretizing Equation 1 in a uniform grid, a seismic trace  

can be written as (Russell, 1988): 

  (2) 

where  is the forward modeling operator,  is the 

acoustic impedance, and  is noise. We performed the 

seismic forward modeling of the acoustic impedance 
models through the convolutional model using different 
Ricker wavelets with central frequencies varying from 20 
to 35 Hz. To make the network robust to noise presence, 
random noises were applied in the synthetic seismic data 
with signal-to-noise ratios ranging from 10 to 35 dB. 

Synthetic acoustic impedance generation 

Dvorkin et al. (2014) describe a workflow to build pseudo-
wells that can reproduce common patterns observed in 
geology such as reservoir properties continuity and 
vertical facies variation. Initially, a facies log is generated 
using the first-order Markov chain Monte Carlo (McMC) 
with a transition matrix  which the term  relates the 

probability of a given facies  transitioning to another  

vertically, depending only on the facies  immediately 

below. Let the study area be composed of three facies: 
sandstones, shale, and carbonates. To build the facies 
log, we used the following matrix : 

 

 

(3) 

where the first row  is the probability of all facies 

being deposited above a sandstone. For example, we 
have a 0.07 probability of depositing a shale above a 
sandstone ( ). The second and third rows refer 

to the shale and carbonates, respectively. For each 
facies, a spatial-covariance matrix brings the high-
frequency information of the variogram to the stochastic 
simulations, while the statistical measurements carry out 
the mean and standard deviation. A single simulation is 
obtained by adding the smooth trend (low-frequency 
information) to the residual pseudo-log achieved by 

multiplying the spatial-covariance matrix with a random 
noise  (Figure 1). An infinite number of pseudo-

logs of acoustic impedance can be generated through this 
workflow. It is important to highlight that the facies are 
used only to bring rock-physics information to the pseudo-
well generation step, as they are not utilized in the neural 
network. The transition matrix shown in Equation 3 was 
used to generate the facies pseudo-logs of all pseudo-
wells. For the exponential variogram model of acoustic 
impedance, we set random ranges varying from 30 to 100 
samples constrained by facies. 

 

Figure 1 – Pseudo-well of the training set. The yellow, 
green, and blue colors represent the sandstones, shale, 
and carbonates in the lithofacies track. 

Closed-loop convolutional neural network 

This study treated the seismic impedance inversion as a 
pixel-wise regression problem. Therefore, to solve it, we 
designed a 1D closed-loop CNN composed of two 
subnetworks with U-Net architecture (Ronneberger et al., 
2015). Our U-Net comprises three elements: the encoder, 
decoder, and skip connections. The encoder consists of 
repeated two consecutive padded 3x1 convolutional 
layers followed by batch normalization (BN), hyperbolic 
tangent activation function (Tanh), and 2x1 max pooling 
layer with stride 2 for downsampling. This element of U-
Net is responsible for learning a hierarchy of features. 
The decoder is almost symmetrical to the encoder, with 
2x1 transposed convolutions with stride for upsampling, a 
skip connection, and two consecutive padded 3x1 
convolutions followed by BN and Tanh. The last layer is a 
1x1 convolutional that outputs a vector with the same size 
as the input. The decoder and skip connections decode 
information to get precise predictions. 

The closed-loop CNN architecture consists of training the 
inversion subnetwork to estimate the acoustic impedance 
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taking the seismic amplitude data as input. On the other 
hand, the forward subnetwork aims to approximate the 
seismic forward modeling using the acoustic impedance 
(Figure 2). We built the closed-loop CNN using the 
PyTorch framework version 1.13. 

 

Figure 2 – Architecture of the closed-loop CNN. ZR is the 
output of the Inversion CNN (I) with an input S. ZR is 
summed to the low-frequency information ZL and fed to 
the Forward CNN (F). 

Cycle-consistency loss function 

Zhu et al. (2017) proposed the cycle-consistency loss for 
image-to-image translation in the CycleGAN. This loss 
function presents several advantages over the simple 
MSE loss: unneeded use of paired data for the whole 
training set; preservation of image content when 
translating from input to output domain; guarantees that 
an input image translated to output domain and back 
again is consistent; robustness to image variations; 
capture of semantic information such as shapes and 
identities. This leads to a semi-supervised learning 
problem. Considering only the inversion network, the loss 
function of the open-loop network is given by the MSE of: 

 

 

(4) 

where  is the input seismic data labeled by the output 

acoustic impedance , forming  pairs of training 

samples. By minimizing the loss function of the inversion 
network, the parameters  are updated. The function  

is responsible for performing the seismic inversion. It is 
straightforward that the loss function of the open-loop 
network for forward modeling follows the same behavior: 

 

 

(5) 

These two loss functions are used in the closed-loop CNN 
to calculate the cycle-consistency loss, expressed as: 

 

 

 

 

(6) 

where 

 

 

(7) 

 

 
(8) 

 

 
(9) 

with  and  corresponding to the cyclic losses 

concerning the labeled seismic amplitude data and 
acoustic impedance, respectively. In addition, the cycle-

consistency loss takes the loss  concerning 

unlabeled data , which makes this a semi-supervised 

training. The hyperparameters , , and  are used for 

tuning the components of the cycle-consistency loss. 

Training and testing step 

We trained the 1D closed-loop CNN for 500 epochs using 
the Adam optimizer (Kingma and Ba, 2014) and the cycle-
consistency loss (Zhu et al., 2017). The training and test 
dataset consists of 3200 and 800 labeled pseudo-wells, 
respectively. The unlabeled data comprises 3200 pairs of 
seismic amplitude and low-frequency acoustic impedance 
randomly extracted from the 3D seismic volume of the 
application set. The batch size selected for training was 
128 and the learning rate is 0.001. Cycle-consistency loss 
parameters , , and  were set to 1, 10, and 1, 

respectively. Training, testing, and application were 
performed using an NVIDIA GeForce RTX 3060 GPU 
Figure 3 shows the train and test losses of the closed-
loop CNN over the 500 epochs. The network converged 
after approximately 50 iterations, with the train and test 
losses almost equal. We decided to adopt the parameters 
of epoch 100 to avoid overfitting effects found after the 
last iteration. 

 

Figure 3 – Train and test losses by epoch. 

Figure 4 illustrates an example of the inversion result in a 
pseudo-well of the test set. The inversion and forward 
subnetwork learned in the closed-loop how to map from 
amplitude to acoustic impedance domain and vice-versa. 
There is also a high-resolution content in the inverted 
acoustic impedance that would be lost if adopting the 
simple MSE instead of the cycle-consistency loss. 
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Figure 4 – Application of the closed-loop CNN in a 
pseudo-well of the test set for (a) inversion and its 
respective (b) forward modeling. 

Application 

We evaluate the network for seismic impedance inversion 
in the Eocene and Paleocene intervals of the New 
Jubarte Field, Campos Basin, Brazil. Shale, marls, and 
turbidite sandstones form this section. The turbidite 
reservoirs of the Carapebus Formation are composed of 
clean sands with high-porosity characteristics (Winter et 
al., 2007). Regarding the acoustic impedance, Fernandes 
et al. (2022) observe strong overlaps of the sandstones 
and shale in well-log data, representing a challenge for 
their identification. 

The seismic inversion was performed in the time domain. 
With the wells tied with seismic data and the Eocene and 
Paleocene horizons mapped, we built the low-frequency 
model of acoustic impedance using ordinary kriging 
guided by the seismic horizons. The well 6-BRSA-497-
ESS was chosen as the blind test, not being used to build 
the low-frequency model. For convenience, we will refer 
to it as Well A. After the inversion, this low-frequency 
model is added to the network output and denormalized 
to reach the absolute acoustic impedance values. 

The result of the seismic impedance inversion using the 
inversion subnetwork is illustrated in Figure 5. In general, 
we observe a high vertical resolution and good lateral 
continuity. The targets are two occurrences of the 
Carapebus Formation: a 46-m thick layer ranging from 
3133-3170ms and a 34-m thick layer in the interval of 
3277-3306ms. We observe a strong correlation between 
the inversion result and the acoustic impedance log of 
Well A, matching the values of both target reservoirs 
(from yellow to green tones). A non-reservoir interval (the 
Ubatuba Formation) occurs between the upper and lower 
Carapebus Formation, marked by intermediate-to-high 
acoustic impedance associated with shale. Above the 
upper Carapebus Formation, the inversion shows a third 
thick interval with low acoustic impedance values, 
possibly related to another turbidite reservoir. The well-log 
data reaches this region, but the caliper log indicates 
break-up zones, compromising the analysis. Despite that, 
the composite log facies indicate intercalations of 
sandstone and marls between 3028-3054ms, highlighting 
a possible reservoir zone.  

 

Figure 5 – Deep learning-based (b) seismic impedance 
inversion at the (a) seismic section crossing Well A. 

There are slight differences in the values of observed 
seismic and the forward modeling of the inversion 
achieved through the forward subnetwork (Figure 6). 
Despite that, the forward subnetwork learned to map from 
acoustic impedance to amplitude domain, preserving all 
features found on observed seismic data. This was crucial 
to the functioning of the closed-loop network and, 
furthermore, we can adopt this trained subnetwork in 
other applications to perform seismic forward modeling 
with a non-linear mapping operator. 

 

Figure 6 – Comparison between (a) seismic amplitude 
data and (b) the result of the forward modeling of 
inversion results using the forward subnetwork. In (c), it is 
shown the difference between (a) and (b). 
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Discussion 

The seismic impedance inversion with the proposed deep 
learning-based method presents a high-frequency content 
that allows the identification of thin-layered intervals. The 
high-resolution content of our approach can be linked to 
the geostatistics information introduced on the pseudo-
well generation via variogram and the cycle-consistency 
loss. By adopting a more straightforward loss function like 
the MSE in an open-loop CNN, most high-frequency 
information would be lost as it disregards the context, 
merely calculating the pixel-wise difference between 
labeled and inverted acoustic impedance data. Our 
proposal is extensible to pre-stack inversion, as rock-
physics models and the seismic amplitude by the angle-
dependent Zoeprittz equations can also generate the 
pseudo-wells. Furthermore, the inversion can be achieved 
in depth since no assumption is made on deep learning-
based methods regarding the seismic domain. 

A disadvantage of the 1D CNN resides in the lack of local 
lateral continuity. Despite that, this effect is negligible 
compared to other results of deep learning-based seismic 
inversion found in the literature (Zhang et al., 2022; Sun 
et al., 2023), highlighting the robustness of our approach. 
Ge et al. (2022) also reached good inversion results using 
the same 1D closed-loop CNN architecture. We presume 
that 2D network architectures can improve lateral 
continuity and preserve high-resolution information, 
possibly producing better models because the network 
will account for lateral connectivity. However, creating 2D 
synthetic seismic data is more challenging than in the 1D 
scenario. Authors such as Wu et al. (2019) and Vizeu et 
al. (2022) present approaches for 2D and 3D synthetic 
seismic data generation that can produce a large variety 
of structures like faults and folds and elastic properties 
like acoustic impedance. However, they used the models 
for other purposes instead of seismic inversion. Although, 
it is straightforward that the computational cost will 
increase in the 2D case. For example, our network has 
21,767,554 trainable parameters, while a simple 
extension of the same architecture in 2D has 62,204,034. 
This leads to a significant increase in computational time. 

Historically, deep-learning algorithms were essentially 
data-driven in the field of computer vision. However, 
computer vision is a data-rich domain, which differs from 
seismic inversion, where data is scarce. Thus, parallel to 
creating high-quality synthetic data, scholars attempt to 
bring physics knowledge to the deep learning-based 
seismic inversion (Lin et al., 2023). Our approach is within 
this field, as the forward subnetwork approximates the 
physical principles of translating from the acoustic 
impedance to the seismic amplitude domain. This 
architecture is called a physics-guided neural network 
(PGNN). Another possible strategy is adopting a physics-
informed neural network (PINN). The PINN uses a known 
physics rule, such as the convolutional model, to perform 
the forward mapping, combining the output to calculate 
the loss function. Future research can compare PINN and 
PGNN for seismic impedance inversion.  

Closed-loop CNN versus model-based inversion 

A comparison between our approach for seismic inversion 
and the traditional model-based inversion (Russell, 1988) 

is presented in Figure 7. The parametrization for the 
Tikhonov damping was set to 0.6 as the model-based 
inversion performed with this value reached the highest 
correlation coefficient with Well A, maintaining a 
geological consistency. We highlight a similar vertical 
resolution of deep learning-based and model-based 
inversions. Nevertheless, the CNN-based inversion 
shows a lower influence of the low-frequency model. This 
is a key factor because the wells are often drilled at large 
distances from each other and in a few amounts, 
representing a challenge for constructing the low-
frequency model using interpolation methods. The model-
based inversion is more sensitive to the low-frequency 
model as it iteratively updates it until matching some 
tolerance or number of iterations. In the model-based 
inversion, the visual correlation between inversion and 
well-log data is worse than in the CNN-based inversion. A 
negative aspect is that our inversion proposal often 
presents some non-geological vertical artifacts not 
observed in the model-based approach. We suggest that 
improvements in the network architecture and training 
data can overcome this unwanted behavior. 

 

Figure 7 – Comparison between (a) deep learning-based 
seismic impedance inversion and (b) traditional model-
based inversion. In (c) and (d), zooms are shown in the 
red and blue boxes, respectively.  

Quantitatively, the CNN inversion reached the highest 
correlation coefficient and lowest dispersion compared to 
the acoustic impedance log of Well A (Figure 8). The 
Pearson linear correlation coefficient and mean absolute 
percentage error of the deep learning-based method are 
0.75 and 0.07, respectively, whereas, in the model-based 
inversion, these estimates are 0.58 and 0.10, 
respectively. Restricting the analysis to the reservoir 
zones, the CNN-based inversion also shows a better 
prediction of the acoustic impedance log, 
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Figure 8 – Comparison between the acoustic impedance 
log of Well with (a) deep learning-based inversion and (b) 
model-based inversion. The reservoirs of the Carapebus 
Formation are the yellow intervals. 

Conclusions 

We presented a deep learning-based method to perform 
the seismic impedance inversion. The closed-loop CNN 
employs the cycle-consistency loss function to preserve 
features when translating from acoustic impedance to 
seismic amplitude domains and back again. An 
application in a turbidite reservoir proves the potential of 
our approach, reaching a high-resolution acoustic 
impedance model with good lateral continuity. The CNN-
based had a better quantitative and qualitative 
performance compared to the model-based inversion, 
achieving a correlation coefficient of 0.75 in Well A. Deep 
learning-based seismic inversion is a topic that is gaining 
considerable attention from researchers, and we endorse 
that promising results like this indicate that they soon can 
be fully incorporated into reservoir characterization. 
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