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Abstract

Lithofacies classification is vital in hydrocarbon exploration,
involving the interpretation of rock layer characteristics.
However, this process can be complex and subjective.
Advancements in Artificial Intelligence (AI) technology
present an opportunity for optimization through machine
learning algorithms. This study utilized supervised
methods (Random Forest, XGBoost, LightGBM, CatBoost)
on Kansas, USA gas field datasets. The methodology
involved preprocessing well data, implementing
algorithms, and evaluating results. Machine learning
models successfully recognized and differentiated
lithofacies based on their characteristics. Evaluation
metrics (Accuracy, Precision, Recall, F1) indicated
XGBoost outperformed other models with: Accuracy
(0.729341), Precision (0.753512), Recall (0.706092) and
F1 (0.720048). These results highlight the promise of
machine learning for automated lithofacies classification,
providing accurate predictions and efficient classifications.
These techniques can optimize geological interpretation in
hydrocarbon exploration and apply to other scenarios.

Introduction

The different layers of rocks found in the subsurface of
the Earth are known as lithofacies. Their classification
plays a crucial role in hydrocarbon exploration, involving
the interpretation of the main physical and chemical
characteristics of rock layers through geophysical well logs
(Serra, 1983). However, this interpretative classification
is often complex and subjective, depending on the
interpreter’s perspective, which can lead to inaccurate and
time-consuming results. With advancements in artificial
intelligence technology, an opportunity has emerged to
optimize and enhance this classification process through
machine learning techniques. The use of machine
learning algorithms can assist in identifying complex
patterns in geophysical and geological datasets, making
the classification more accurate and efficient (Ma and
Zhang, 2019). Moreover, models can be trained on large
labeled datasets, allowing for detailed and precise analysis
of subsurface rock characteristics (Raschka, 2015).

The lithofacies classification process follows a sequence
of well-defined steps. Initially, data collection takes place,
seeking relevant information to predict rock characteristics.
This data may include geophysical well logs, which provide

physical and chemical data about rock layers (Nery, 2013).
In this study, we explore the use of machine learning
techniques to achieve accurate and automated lithofacies
classification.

It is important to note that machine learning does not
rely on explicitly programming rock characteristics but
rather on the ability to recognize patterns. This allows
models to be applied to new scenarios, making predictions
or classifications based on previous training experiences
(Raschka, 2015). In this specific study, supervised
methods such as RF (Random Forest), XGBoost (Extreme
Gradient Boosting), LightGBM (Light Gradient Boosting
Machine), and Categorical Boosting (CatBoost) were
utilized for lithofacies classification. All these methods were
applied without hyperparameter tuning. These algorithms
can learn from labeled examples and apply that knowledge
to classify new geophysical datasets, increasing the
accuracy and efficiency of the classification process.

To assess the efficiency of the algorithms used in
lithofacies classification, commonly adopted metrics such
as accuracy, precision, recall, and F1-score were employed
(Hossin and Sulaiman, 2015). In order to evaluate
the algorithms’ performance in a real-world scenario, a
prediction was made on a blind well that was not part of the
machine learning model’s training dataset. The application
and visualization of this prediction allowed for an analysis
of the algorithms’ efficiency in a practical context.

The combined analysis of the metrics and the prediction
revealed that the XGBoost algorithm demonstrated the
best overall efficiency. It yielded the highest results in terms
of accuracy, recall, and F1-score. The LightGBM algorithm
also exhibited satisfactory performance, particularly in
the precision metric. On the other hand, the CatBoost
and Random Forest algorithms displayed slightly lower
efficiency, but still achieved acceptable classification
results.

These findings underscore the importance of selecting the
appropriate algorithm for lithofacies classification, taking
into consideration the evaluation metrics and the specific
characteristics of the dataset at hand. Furthermore, the
analysis of the prediction on a blind well provided additional
validation of the algorithms’ efficiency under real-world
conditions.

Theorethical Background

To achieve the proposed objectives, the adopted
methodology consisted of several main steps. The first step
involved preprocessing the well data to make it suitable
for implementing the classification algorithms. In this step,
well data visualization, target and feature selection, data
normalization, outlier removal, and categorical variable
encoding, among other minor procedures, were performed.
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Additionally, the data were trained.

The second step involved the implementation of the
aforementioned classification algorithms. For this purpose,
the Scikit-learn and CatBoost libraries were used for
machine learning, along with the LightGBM library. These
classification models have a similar usage as regression
models, aiming to identify groups in the input data, with
a categorical variable as the output. Random Forest is
an ensemble machine learning algorithm that combines
multiple individual decision trees to form a robust and
accurate classifier. It was introduced by Breiman (2001)
and has since been widely used in various application
fields.

The basic idea behind the model is to create a set of
decision trees, where each tree is trained with a random
sample of the training data and uses a random subset of
features to make node splits. In other words, each decision
tree is built with a random selection of observations and
variables, preventing a specific set of data or features from
dominating the learning processes.

During the testing phase, the algorithm classifies a new
example by counting the votes from the results of each
decision tree. The class with the highest number of
votes is chosen as the final class for the input example.
Studies have shown that Random Forest is capable of
handling a variety of machine-learning problems, including
classification, regression, and anomaly detection. It also
has the advantage of being relatively insensitive to outliers,
noise, and missing data.

Random Forest can be defined as:

f (x) = ∑
L
k=1 hk(x)

where hk(x) is a decision tree trained on Tk independent
random samples that are equally distributed, and each
decision tree determines the class with the highest
popularity for an input (Breiman, 2001). On the other
hand, XGBoost is an open-source machine learning library
that utilizes algorithms based on a gradient boosting
framework. Gradient boosting is a technique that allows the
use of regression and classification in prediction problems
and produces a model in the form of a decision tree,
which can be interpreted as an optimization algorithm on
a suitable cost function. This method was developed by
Chen et al. (2015) in a research project that used boosted
gradient decision trees and observed several advantages
over other methods, such as parallel data processing,
regularization to reduce the chance of overfitting, and
flexibility in hyperparameter tuning.

Its numerical definition involves the minimization of a
regularized loss function, defined as the sum of the model’s
losses on the training instances plus a penalty for the
model’s complexity controlled by the hyperparameter λ :

L (φ) = ∑i l(yi, ŷi)+∑kΩ( fk)

where l is a loss function that measures the discrepancy
between the model’s predictions ŷi and the true responses
yi on the training instances, fk is a decision tree that models
the relationship between the features and responses, Ω is
a penalty on the complexity of the trees, and φ is the set of
all trees (Chen et al., 2015).

The algorithm starts with a single simple decision tree and,
in each iteration, adds a new tree that focuses on the
residual errors of the previous prediction. The contribution
of the new tree is controlled by the hyperparameter η ,
which determines the learning rate or step size. The
addition of new trees continues until the loss function
can no longer be reduced or until a stopping criterion
is reached. During tree construction, a technique called
pruning is applied, which removes irrelevant branches from
the tree and helps prevent overfitting. The final result of the
algorithm is a collection of decision trees that can be used
to predict new instances or understand the relationship
between features and responses.

The model provides flexible and efficient solutions, capable
of solving various problems involving databases more
quickly and accurately. This justifies its reputation as one
of the beloved algorithms used in competitions, such as
the renowned Kaggle platform. Regarding geophysical
data, particularly well data, XGBoost can be used in the
classification of facies and other problems. Additionally,
other machine learning libraries such as Random Forests,
LightGBM, and CatBoost are also applicable to this type of
problem. These tools can help obtain more accurate and
efficient models for the classification of geological facies,
which is a fundamental step in the process of hydrocarbon
reservoir exploration.

LightGBM is a machine learning algorithm based on
decision trees that utilize gradient boosting techniques. It
has a vertical growth structure, allowing a leaf-wise growth
of the tree, which differentiates it from other algorithms that
have a level-wise horizontal structure as mentioned by Ke
et al. (2017). It was created by Microsoft in 2017 and has
since been widely used in classification problems due to
its high efficiency and training speed, as well as its lower
computational memory usage and high accuracy.

Several studies have pointed out the advantages of the
model compared to other classification algorithms (Yan
et al., 2021). When applying LightGBM to a dataset,
methods such as adjusted decision trees are used to
avoid overfitting the training data, integrated gradient
optimization to improve the classifier’s robustness, and
gradient-based one-sided sampling (Jabeur et al., 2021).
According to Jabeur et al., the estimated function of
LightGBM integrates multiple regression decision trees,
and it is defined as follows:

f (x) = ∑i ti(x)

where ti is a regression decision tree.

Finally, like the other methods mentioned, CatBoost also
utilizes a gradient-boosting algorithm in the form of a
decision tree. It was responsible for solving a common
problem in LightGBM and XGBoost, known as missing
target. This problem causes the trained algorithm to
depend on the targets present during the training data,
leading to compromised results in the absence of some
targets in case of data changes. The general equation of
CatBoost can be expressed as follows:

F(x) =
N

∑
i=1

η ·h(x,θi)

where F(x) represents the predictive model constructed by
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CatBoost, N is the number of base estimators, η denotes
the learning rate, h(x,θi) is a weak function (decision tree)
with parameters θi (Dorogush et al., 2018).

This formulation allows CatBoost to iteratively combine
multiple weak estimators to form a more powerful predictive
model. CatBoost’s characteristic is to use ordered
boosting during processing as one of the algorithm’s basic
predictors, employing the same splitting criterion at every
tree level. The trees are balanced between those less and
more prone to overfitting.

It has advantages such as the ability to use the entire
dataset for training, incorporating all classification features
into the current tree of the dataset, employing a wide range
of permutations of training data for increased robustness
in the results, and utilizing binary features stored in
continuous vectors to calculate the model’s predictions.
In the third step, the effectiveness of the algorithms on
well data was analyzed. Cross-validation techniques
were employed to evaluate the model’s accuracy and
prevent overfitting. Furthermore, the effectiveness of the
classification algorithms was assessed using metrics such
as accuracy, recall, precision, and F1-score.

Metrics for classification analysis are a way to evaluate
the performance quality of a model. They are important
to understand how a model is performing and make
adjustments to improve the accuracy of predictions.
Among the metrics used during the research, accuracy,
recall, precision, F1-score, and confusion matrix can be
mentioned. The confusion matrix aims to present the
model’s performance in a tabular format, showing the
data that was correctly and incorrectly classified, including
true positives, true negatives, false positives, and false
negatives (Saito and Rehmsmeier, 2015). It is often used
as a tool to understand how the model is classifying each
class and can also be used to calculate other evaluation
metrics. It is applied to both binary and multiclass
classification. Finally, the predicted wells were visualized
and compared with the lithology of real wells. It is of
paramount importance to mention that the classification,
up to this point, was performed without hyperparameter
optimization, which should be employed in future research
to further refine the results.

Methodology

The data used in this study pertains to the Hugoton and
Panoma gas fields located in Kansas, United States, as
mentioned by Dubois et al. (2003; 2006; 2007). These
fields are situated in the Anadarko Basin, bounded by the
Las Animas arch and the Central Kansas uplift. The basin
is classified as a foreland type and is associated with the
Ouchita-Marathon Pennsylvanian orogeny, as described by
Kluth (1986) and Perry (1989). The main reservoirs consist
of carbonate rocks, with secondary high-permeability and
high-porosity sandstone reservoirs. The predominant
sealing rocks are fine to coarse-grained silstones, as well
as evaporites, as reported by Heyer (1999) and Dubois
et al. (2003).

The Hugoton and Panoma fields are concentrated within
the Chase and Council Grove groups, which consist of
vertical successions of lithofacies with a well-established
cyclical pattern. These facies successions exhibit an
upward pattern resulting from depositional environments

influenced by rapid changes in relative sea level, as
discussed by Olson et al. (1997). More information about
the depositional model attributed to these groups can be
found in the study by Dubois et al. (2006) and the cited
references.

The data used in this study were provided by the University
of Kansas and were obtained through a challenge
organized by the Society of Exploration Geophysicists for
lithology prediction. It is important to note that these
data were used in their raw form without undergoing
any preprocessing, as mentioned by Dubois et al.
(2003; 2006; 2007). The dataset consists of 3232
records from eight distinct wells: SHRIMPLIN, SHANKLE,
LUKE G U, CROOS H CATTLE, NOLAN, Recruit F9,
NEWBY, and CHURCHMAN BIBLE. These records contain
measurements at 0.15 m intervals of various variables from
well logs, such as gamma-ray (GR), resistivity (ILD_log10),
photoelectric effect (PE), average porosity and neutron
density (PHIND). Additionally, the dataset also includes the
difference between porosity and neutron density (DeltaPHI)
and information about relative position (RELPOS). It
is worth noting that all records are associated with
specific lithologies, which include: Nonmarine sandstone
(SS), Nonmarine coarse siltstone (CSiS), Nonmarine
fine siltstone (FSiS), Marine siltstone and shale (SiSh),
Mudstone (limestone) (MS), Wackestone (limestone) (WS),
Dolomite (D), Packstone-grainstone (limestone) (PS),
Phylloid-algal bafflestone (limestone) (BS).

Results and Discussions

After applying the lithofacies classification methods using
the Random Forest, XGBoost, LightGBM, and CatBoost
algorithms, the following through metrics performance is
shown in Table 1.

Table 1: Metrics performance on the lithofacies
classification using different ML models: RF, XGB,
LGBM, and CatBoost. Results in terms of Acc, Prec, Rec,
and F1.

Model Acc Prec Rec F1

RF 0.716168 0.748162 0.688896 0.703561
XGB 0.729341 0.753512 0.706092 0.720048
LGBM 0.724551 0.758990 0.689090 0.709863
CatBoost 0.720958 0.746437 0.691803 0.707078

Analyzing these results, we can highlight that all
models achieved relatively good performance in lithofacies
classification. The accuracy, which measures the
proportion of correctly classified examples, ranged from
0.716168 to 0.729341, indicating an overall accuracy
rate of over 70% (see Figure 1). Looking at precision,
which represents the proportion of correctly classified
positive examples, all models obtained values above 0.74,
indicating a consistent ability to correctly identify positive
lithofacies. The recall, which measures the proportion of
correctly identified positive examples relative to the total
number of truly positive examples, also showed positive
results for all models, with values above 0.68. This
suggests that the models were able to identify a significant
percentage of positive lithofacies present in the data. The
F1-score, which combines precision and recall into a single
metric, had values above 0.7 for all models. This result
indicates a satisfactory balance between the ability to
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Figure 1: Confusion matrix obtained for the classifications. Additionally, precision, recall, and F1-Score metrics are presented. Classifications
A, B, C, and D correspond, respectively, to the Random Forest, XGBoost, LightGBM, and CatBoost methods.

correctly classify positive lithofacies and the ability to avoid
false positives (see Figure 1).

The Figure 1 present the confusion matrix of the
Random Forest, XGBoost, LightGBM, and CatBoost
models used in this study. By considering the
confusion matrix along with the evaluation metrics, it is
possible to obtain a more complete and detailed view
of the classification models’ performance. This in-depth
analysis assists in identifying areas where the models
may be experiencing difficulties and suggests possible
improvements or adjustments increase the accuracy and
reliability of lithofacies classifications.

From Figure 1, in A, we can observe that the Random
Forest model achieved a precision of 0.748162, indicating
that 74.82 of lithofacies were correctly classified. The
recall, which measures the model’s ability to correctly
identify lithofacies, was 0.688896, representing an

accuracy rate of 68.89. The F1-score, which is a
weighted average of precision and recall, was 0.703561.
Similarly, B, C, and D show the confusion matrices and
performance metrics for the XGBoost, LightGBM, and
CatBoost approaches, respectively.

By analyzing the confusion matrices, it is possible to
identify areas where the models encounter difficulties, such
as confusion between similar lithofacies. This detailed
analysis can be used to enhance the models by adjusting
parameters, selecting more relevant features, or even
collecting more data to improve the representativeness of
the training set.

Each cell represents the number of instances
corresponding to a specific combination of true class
and predicted class. The main diagonal indicates the
correct classifications, while the cells off the main diagonal
indicate incorrect classifications. Analyzing the confusion
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matrix provides insights into the models’ performance for
each class and assists in identifying error patterns.

A more comprehensive way to evaluate the results is
through the analysis of predicted well profiles, as shown in
Figure 2. This visualization allows for a direct observation
of the lithofacies of the SHANKLE well, as well as
the predicted profiles using their respective classification
methods. Additionally, well profiles for the GR, (ILD_log10),
DeltaPHI, PHIND, and PE properties have also been
plotted. It is essential to highlight that the visual analysis of
the predicted well profiles plays a crucial role in the intuitive
understanding of the results, enabling the identification
of possible patterns or discrepancies in the classification
methods. This approach, combined with the evaluation
metrics analysis, provides a comprehensive and detailed
insight into the performance of the classification models.
From this, it is possible to identify areas where the models
may encounter difficulties and propose improvements or
adjustments to increase the accuracy and reliability of
lithofacies classifications.

Conclusions

When comparing the results of the machine learning
models applied to automated lithofacies classification,
it was observed that XGBoost showed the highest
accuracy. However, the LightGBM and CatBoost models
also demonstrated similar performance, with closely
evaluated metrics. These results highlight the potential
of these algorithms when applied to geophysical and
geological datasets, allowing for the precise identification
of lithofacies. The use of machine learning techniques
enables the detection of complex patterns in the data
and learning from labeled examples, providing a detailed
analysis of subsurface rock characteristics and contributing
to a better understanding of geological processes.

However, it is important to note that the obtained results
can be improved through hyperparameter tuning of the
models. Hyperparameter tuning involves searching and
optimizing the best values for the algorithm parameters,
aiming to further enhance performance and classification
accuracy. Therefore, future studies can focus on
this refinement step, exploring different combinations of
hyperparameters and advanced optimization techniques.
This will enable a more precise adjustment of the models
to specific geophysical and geological data, potentially
resulting in higher accuracy and robustness in lithofacies
classifications.

In summary, the results of this study demonstrate that
machine learning models such as XGBoost, LightGBM,
and CatBoost perform well in automated lithofacies
classification. Hyperparameter tuning represents
a promising opportunity to further improve these
results, contributing to significant advancements in
the understanding and interpretation of subsurface
geological characteristics. We will continue to explore and
refine these techniques, aiming to contribute increasingly
to the advancement of geophysical and geological science.
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Figure 2: Comparison between the actual facies and the facies predicted by the classification methods used in this research is presented. The
gamma-ray curves (GR), logarithmic scale resistivity on base 10 ((ILD_log10)), the difference between porosity and neutron density (DeltaPHI),
the average porosity and neutron density (PHIND), and photoelectric effect (PE) is also illustrated.

Eighteenth International Congress of the Brazilian Geophysical Society


	Introduction
	Theorethical Background
	Methodology
	Results and Discussions
	Conclusions
	Acknowledgments

