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Abstract

We present an efficient preconditioning of least squares
reverse time migration (LSRTM) based on the inverse
scattering image condition (ISIC). Numerical experiments
using the Marmousi Il model validate our approach in
the data and in the image domain.Moreover, we show a
modification of ISIC to promote the reflected tomographic
components of the wavefield for full waveform inversion
(FWI). This result accelerates the convergence of FWI,
even when the spectrum of the recorded wavefield does
not have low-frequency energy, and inverts more accurate
velocity models.

Introduction

Migration and inversion of the full wavefield are two
of the most commonly used methodologies in the
seismic prospecting process. Migration aims to estimate
subsurface structures using different techniques. Among
them, reverse time migration (RTM) has been widely
employed since the 1990s due to its ability to imaging
models with complex structures effectively. However,
the amplitudes obtained in the migrated image do not
accurately with the true amplitude of the subsurface
reflection coefficients.

Aiming to produce migrated images with amplitudes
relative to the true reflection coefficients,Kiyashchenko
et al. (2007) and Op’'t Root et al. (2012) proposed the
inverse scattering imaging condition (ISIC). In a more
detailed mathematical study using microlocal analysis,
Op’'t Root et al. (2012) demonstrated that this image
condition is an asymptotic inverse of the linearized scalar
acoustic wave equation (Born approximation).  The
numerical implementation of ISIC in the time domain
needs two cross-correlation terms, one relative to the time
derivatives of the source and receiver wavefields and the
other to the gradients of those same wavefields. This leads
to a higher computational cost compared to implementing
the Claerbout image condition with the Laplacian filter and
illumination compensation (CLI).

Albano et al. (2023), using high-frequency approximation
and redistributing the frequency factors present in the
original equation of Op’t Root et al. (2012), derive several
alternative expressions for the ISIC implementation. Two
of these approaches, similar to Douma et al. (2010),

depend on the Laplacian operator and only one cross-
correlation term resulting in the same implementational
cost as the CLI. However, effects such as limited aperture
of the acquisition array, variations in model illumination,
and limited frequency band of the source can affect the
quality of the migrated image regardless of the imaging
condition used. To mitigate these issues the migration
is formulated as a linear inverse problem (least-squares
migration - LSM), Nemeth et al. (1999); Trad* (2015); Dai
and Schuster (2009).

On the other hand, Full Waveform Inversion (FWI) is a non-
linear inversion method that aims to estimate the properties
of the background medium through which the wavefields
propagate (Tarantola, 1984; Pratt and Worthington, 1990;
Sirgue et al., 2009; Warner et al., 2013). Although the
formulation of the FWI considers that full information from
the seismogram can be used in the inversion process,
the presence of lower frequency content as possible in
the data, and an initial model not too far from the true
one avoids cycle skipping and solution stagnation at local
minima, Shin and Min (2006).

Sirgue (2006) show that the penetration depth of
transmitted wavefields depends on the offset between
sources and receivers. The greater the offset, the
greater the depth of penetration of these events. On
the other hand, transmitted wavefields resulting from
very long offsets exhibit strong nonlinearity concerning
perturbations in the background model. Therefore,
reflection tomographic components constitute a relevant
source of information for updating the background model
in the deeper regions.

In this context, Ramos-Martinez et al. (2016) proposed
a robust gradient for FWI that combines the energies of
reflected and transmitted wavefields into a single inversion
scheme. To achieve this, the authors use the velocity
sensitivity kernel of the inversion problem as the search
direction. Apart from the sign reversal between the cross-
correlation terms, this gradient is similar to ISIC.

In this research, propose a efficient preconditioning
least-squares reverse time migration basead on
ISIC. Additionally, we modified inverse scattering
imaging condition to promote the reflected tomographic
components of the wavefield for FWI.

Inverse scattering imaging condition

In this research, we considered the inverse scattering
image condition (ISIC) proposed by Op’t Root et al. (2012).
These authors originally formulated ISIC in the frequency
domain as follows,
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where P, = P(w,x;x,) and P = P.(o,x;X;) are, respectively,
the Fourier transforms of the source and receiver
wavefields, and c(x) is the propagation velocity of the P-
wave. Additionally, the bar above the symbols denotes the
complex conjugate operation.

To satisfy the image condition 1, the reverse wavefield (P,),
in the time domain (p,), is backpropagated using the wave
equation.

1 azpr(xvt)
2(x) o2

—V2pl(x,1) = Fy,, (Xr,1), @)

Where F;, (x,,t) denotes a filtered version of the observed
data injected at the receiver positions x,. According to
Op’t Root et al. (2012), the filtering operation can be
represented by

Fi,p, (vat) = FBdgbs(X,l‘). (3)

In equation 3, d,(x,7) represents the observed data and
Fp is a boundary operator defined by,

Fg= —21'1),%\/1 —c2(x)D?Dg, (4)

Dt - —13, e Dx - —lax (5)

com

Based on equation 1, Albano et al. (2023) derived different
implementational forms of ISIC in the time domain. Here,
we highlight two of these formulations. The first one is
governed by the following expression,

I(x) = Z ﬁ /l dr [psq‘r +(x)Vpy- Vqr] ; (6)

with ps = ps(t,x;x,) and gr = gr(¢,x;x,). The dot above the
symbols denotes temporal derivation, and ¢, represents
temporal integration of the receiver wavefield.

t
qr(t,x;Xg) = /O pr(t,xxg)dt’ (7)

and the illumination compensation factor P'(x,x;) is
evaluated through the autocorrelation of the temporal
derivative of the source wavefield, i.e.,

P(x,x;) = /tdt(ps(t,x;xs))z . ®)

Equation 6 depends on the evaluation of two cross-
correlation terms, one between the temporal derivatives of
the source and receiver wavefields and the other between
the gradients of these same wavefields. In another
approach, ISIC is formulated in terms of the Laplacian
operator as follows,

C2
L (x) :ZW(?)L)Vz/tdt (1% )gr (1,%5%5)] - (9)

s

where ry(t,x;X,) represents the second temporal derivative
of the source wavefield.

92 ps

rs(ﬁX;Xx) =

and R(x;x;) is the illumination compensation factor defined
as,

R(x;Xy) :(/t\dt(rs(t,x;xs))2 . (11)

As discussed in Albano et al. (2023), the implementation
forms of ISIC in equations 6 and 9 are theoretically
equivalent and yield numerically approximate results. Both
formulations provide migrated images with amplitudes
relative to the true reflection coefficients. However,
due to the dependence on the evaluation of temporal
and spatial derivatives of the source and receiver
wavefields, the formulation based on equation 6 requires
higher computational cost compared to the numerical
implementation of equation 9. In comparison, the
computational cost of ISIC in equation 9 is similar to that
required for implementing imaging condition of Claerbout
(1971) with Laplacian filter and illumination compensation
(CL),

I(x) :;P(XI;XX)VZ /rdt ot xx)ptxx)]  (12)

where the illumination compensation term P(x;x;) is given
by,

P(x;x,) = /dz(ps(ux;xs)f . (13)

Although the CLI image condition (equation 12) provides
migrated images without backscattering noise and
efficiently estimates subsurface structures, it does not
have the same property as ISIC in achieving amplitudes
relative to the true reflection coefficients.

Least Squares Reverse time migration based on the
ISIC

The demand for Least Squares Migration (LSM) arises
from the fact that the migration operator is the adjoint, and
not the inverse, of the modeling operator, resulting in a
blurred representation of subsurface reflectivity (Claerbout,
1992). In this image, the resolution is controlled by
acquisition parameters (source signature and acquisition
geometry) and the physical properties of the medium
(Valenciano et al., 2015). Therefore, LSM aims to mitigate
these effects and improve the resolution of migrated
images.

In the forward problem, it is considered that the modeled
data d is the result of applying a linear modeling operator L
to the reflectivity of the medium m (Snieder and Trampert,
1999), i.e.,

d=Lm. (14)

In turn, the application of the adjoint operator LT to the
observed data set d°°S defines the migration operation as
follows,

LTdobs = mmig~ (1 5)

where mpy is the migrated image. In an initial
approach, the inverse problem can be formulated based
on the objective function that measures the squared
misfit between the observed reflected data (dyps) and the
modeled data, i.e.,

J(m) = ||Lm_dobsH27 (16)

In which, at each iteration, the optimization algorithm seeks
to determine a reflectivity model m capable of minimizing
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the residual between the data. According to Menke (1989),
the solution to the linear seismic inversion least squares
problem 14 that minimizes the quadratic misfit function 16
is defined as follows

L'Lm=L"d. (17)
Since LL has an inverse, equation 17 can be rewritten as,

m=(L"L)"'LTd. (18)

Considering the Gauss-Newton approximation of the
Hessian matrix of the objective function 16, L'L =H, and
the equation that defines the migrated image (equation 15)
the least-squares solution 18 can also be defined as,

m=H"m,,;. (19)

Equation 18 solves the linear system by iteratively
evaluating the modeling operator L and its adjoint L.
This methodology is known as least-squares migration in
the data domain (Nemeth et al., 1999; Duveneck et al.,
2021). On the other hand, equation 19 governs the
implementation of LSM in the image domain (Guitton,
2004; Valenciano, 2008; Guo and Wang, 2020).

The evaluation of the modeling and migration operators
through the full-wave equation results in least squares
reverse time migration (LSRTM). The acoustic approach
with constant density is based on the following wave
equation,

1 azp(t,x)
2(x) ot?

~V2p(t,x) = s(t,x), (20)

where s(7,x) is the source term. Equation 20 presents
a nonlinear relationship between perturbations in the
model parameters (6¢(x)) and the wavefield p(s,x). The
propagation of the scattered primary wavefield ép(¢,x) in a
26¢(x)
c(x)
the linearization (Born approximation) of the acoustic wave
equation 20, i.e.,

scattering model m(x) = can be evaluated through

1 3%8p(t,x)
2(x)  ot?

m(X) 9°p(t,X)
c(x)2 otz

—V25p(1,x) = (21)

data-domain least squares reverse time migration

The data-domain least squares reverse time migration
(DD-LSRTM) aims to iteratively estimate the solution 18
that minimizes the misfit function between the observed
reflected data (d,;,) and the modeled scattered data (d,,.»)
using the /2 norm, i.e.,

7m) = T Y [y~ Ao 22)

X5 X,

The solution 18 is updated at each iteration k using the
iterative solution (Schuster and Liu, 2019).

M1 1) = M) + Vi (m). (23)
The gradient of the objective function V.J,(m) is constructed

by reverse-time injection of the residual between the data at
the receiver positions. The iterative process aims to update

the reflectivity model by taking a step « in the direction of
decreasing gradient.

In DD-LSRTM, the gradient of the objective function is
defined by the expression.

T 2
VJ(m) = —Z%/O dt {pr(hx)%} (24)

X

which states that the gradient of the objective function 24 is
calculated through the zero-lag cross-correlation between
the second temporal derivative of the source wavefield
p(t,x) and the adjoint wavefield p,(r,X) evaluated through
the following adjoint wave equation,

1 92p,(t,x
C—z%fvzpr(z,x):z[dobs(ux)fdmod(z,x)]é(xfxry
X;

(25)
where the source term is the residual between the
observed and calculated data injected at the receiver
positions and back-propagated in time.

Image-domain least squares reverse time migration

The implementation scheme of image-domain least-
Iquares reverse time migration (ID-LSRTM) is derived from
the matrix relation 19 and can also be written as follows

Mg = Hm. (26)

Equation 26 shows that the migrated image m,,;, results
from the convolutional relationship between the subsurface
reflectivity m and the Hessian matrix H. In other words,
the migrated image corresponds to a filtered version of the
true reflectivity where the Hessian matrix acts as a blurring
filter (Valenciano, 2008). Given the migrated image and an
approximation for the Hessian matrix, the linear system 26
is iteratively solved by minimizing the objective function

J(m) = [[HM —m,;e . (@7)

In this research, we approximate each column of the
Hessian matrix using the Point Spread Function (PSF),
similar to the approach used in Valenciano (2008),Fletcher
et al. (2016),0sorio et al. (2021).

Preconditioning LSRTM with ISIC

Considering that the inverse scattering image condition
produces migrated images relative to the true reflection
coefficients, we propose to use it in the LSRTM workflow
to precondition the inversion process. To avoid increasing
computational costs, we adopt the formulation based on
equation 9. In the data domain application, we use the ISIC
as the search direction for updating the reflectivity model.
On the other hand, in the image domain approach, we use
the inverse scattering image condition to estimate the Point
Spread Functions (PSFs) and the migrated image.

Full waveform inversion based on modified ISIC

Full Waveform Inversion (FWI) is a nonlinear seismic
inversion method that aims to estimate the properties of the
background medium using the complete wave equation.
Similar to LSM, the objective function J(c) of the problem
consists of minimizing the quadratic norm of the residual
between the observed data set p,;,(xr,#) and the modeled
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data Pmod (X,,l‘) '

7€) = L X 3 1pos%0) ~ praa keI (28)
X; X,

In acoustic FWI with constant density, the calculated data
is obtained through the numerical solution of the wave
equation 20. The minimization of the data misfit function
28 is performed starting from an initial velocity model c0. At
each iteration &, the optimization algorithm seeks to update
the velocity model ¢, by taking a step « in the direction
of the search ¢ (Virieux et al., 2017).

Ci+1 =Cr+ adcy. (29)

In a simpler approach, the search direction dc;, is defined
directly by the gradient of the objective function 28,
expressed as

2 T 82ps(t,x)
VJ(C)*—;W/O dl[Pr(t»X)T ; (30)
where the wavefield p,(¢,x) is evaluated through the
following adjoint wave equation,

2
CZEX) % - Vzpr(XJ) = [pobs(xrvt) 7pm0d(xrvt)]'

(31)
The source term in equation 31 refers to the residual
of the data injected at the receiver positions in reverse
time. In order to attenuate the geometric spreading
effect of the source in the deep part of the model, the
gradient of the objective function 30 is often preconditioned
with a diagonal approximation of the Hessian matrix,
known as the pseudo-Hessian matrix. For the scalar
acoustic problem, the pseudo-Hessian matrix is defined as
(Carneiro et al. (2018)),

Hyu() =Y <3_<i))2 ! d,[az,gg’x) '92”5:(;”‘)] (32)

X;

Search direction based on modified ISIC

When inverting the sign of the reverse scattering imaging
condition 6, we obtain,

1

Ir(x) = ;m/l'dl [[qurfcz(x)Vps Vqr] . (33)
EExcept for the propagation of the integral of the
receiver wavefield and the illumination compensation factor
inherent to ISIC, equation 33 is similar to the robust
gradient of FWI based on the velocity sensitivity kernel
proposed by Ramos-Martinez et al. (2016). Figure 1
compares the gradients of FWI 30 preconditioned with
the pseudo-Hessian matrix (Figure 1a) with the gradient
based on the modified ISIC 33 (Figure 1b). Comparing
the isochrones indicated by the red arrows, we note
that although the gradient based on the modified ISIC
still exhibits migration components, their amplitudes are
smaller than those observed in the gradient of conventional
FWI preconditioned with the pseudo-Hessian matrix.
Additionally, the reflection tomography component has a
higher amplitude in the gradient based on the modified
ISIC, as indicated by the blue arrows. Therefore, we
propose to precondition the FWI with more information from
the reflection tomography components using the gradient
based on the modified ISIC 33.

Lateral Extension (m)
1000 2000 3000 4000 5000 6000 7000 8000 9000

0

°
8.
5

g
=
£
a

2000

3000

(a)

Lateral Extension (m)
1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

g
=
£
a

2000

3000

b
Figure 1: Conventional FW(I r)>reconditioned with pseudo-
Hessian matrix (a) and the gradient based on modified ISIC
(b). The red arrows indicate the migration components,
while the blue arrows indicate the reflection tomography
components.

Numerical experiments

We evaluated the results of applying ISIC in the
LSRTM and modified ISIC in the FWI through numerical
experiments involving synthetic data from the Marmousi Il
velocity model.

Application in LSRTM

Figure 2 shows the results achieved by ISIC-based LSRTM
in both the image domain and the data domain (Figures 2e
and 2f). For comparison, we also show the corresponding
results of conventional LSRTM (Figures 2b and 2c).

The results show that both the conventional LSRTM and
the ISIC-based LSRTM converged to approximate models.
However, the ISIC-based inversion demonstrates a higher
convergence rate, as shown in Figure 3. The black
rectangles in the inverted models highlight that the image-
domain approach (which requires lower computational
cost) provides better results.

Application in FWI

In this experiment, we used a Ricker wavelet with a peak
frequency of 8Hz and a frequency spectrum between
3Hz to 15Hz to simulate the observed data through the
propagation of the acoustic wave equation with constant
density. The velocity models recovered based on the
conventional FWI gradient preconditioned with the pseudo-
Hessian and the the modified ISIC are presented in Figures
4c and 4d, respectively. The results show that the inversion
using the modified ISIC provided a model with higher
resolution, especially in the deeper region. This result can
be observed in Figure 5, which shows that the approach
based on the modified ISIC provides a greater decrease in
the objective function.

speed
Conclusion

Our research evaluated the effects of applying the Inverse
Scattering Imaging Condition on the recovery of reflectivity

Eighteenth International Congress of the Brazilian Geophysical Society
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Figure 2: Results of the LSI(R%'M. (a) RTM image resulting
from the conventional image condition (CLI), (b) and (c)
results of the conventional ID-LSRTM and DD-LSRTM,
respectively. (d) RTM image using ISIC, (e) and (f) results
of the ISIC-based ID-LSRTM and DD-LSRTM, respectively.

and seismic velocity models. For this, we compare the
performance of the LSRTM and FWI methods based on
ISIC with the conventional approaches of these inversion
methodologies.

The numerical results of the LSRTM using the synthetic
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Figure 3: Convergence rate of LSRTM. (a) Inversion in the
image domain using Conjugate Gradient. (b) Inversion in
the data domain using LBFGS.
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Figure 4: Result of the inver(sic))n of the Marmousi Il model.
True velocity (a), initial velocity (b), and velocity models
retrieved by FWI using conventional FWI preconditioned
with the pseudo-Hessian (c) and modified ISIC (d).
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Figure 5: Convergence rate of the FWI objective function.
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dataset of the Marmousi Il model demonstrated that,
in general, the ISIC accelerates the convergence of
the optimization algorithm. The formulation using the
Laplacian filter and only one cross-correlation term allowed
the LSRTM based on ISIC not to require additional costs
compared to the conventional LSRTM.

We applied the modified ISIC in the FWI to precondition
the inversion with the low wavenumber components of
the reflected wavefield. The results obtained from the
inversion of the synthetic data from the Marmousi Il model
showed that this approach recovered a velocity model with
higher resolution in the deeper layers compared to the
conventional FWI result.
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