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Abstract

We evaluate the classical first arrival tomography
applicability in a simple time lapse experiment. A base
velocity model is given to generate a small variation
to build a monitor model with Santos Basin pre-salt
structures. Synthetic base and monitor travel time data
is created via eikonal equation solver using a circular
shots with Ocean Bottom Nodes. The geometry
acquisition employed is formulated specifically for
reservoir monitoring with low range of shots and large
offsets. A data selection was done to catch only
the receiver gathers that contemplate the travel time
difference target. The target 4D anomaly difference
and the convergence curve is shown. Results show
a good 4D anomaly reconstruction at the upper and
lower limits of the reservoir. Nevertheless inside it,
the reconstruction is not achieved because of the ray
tracing kernel limitations.

Introduction

Enhance oil recovery using 4D seismic inversion are been
broadly developed to optimize strategically the life range
of oil and gas reservoirs. Justice et al. (1989) show a
tomography application for this case, but nowadays full
waveform inversion has been obtaining the main space
in reservoir time lapse velocity model variation (Hicks et
al., 2016; Zhou and Lumley, 2021). High defined models
can be constructed with elaborate inversion tools (Liu and
Gu, 2012), but tomography is a computationally cheap and
fast method which may play a relevant role in time lapse
studies. Some developments are applied to configure a
special geometry acquisition that takes less time to be
completed and that is less harmful to the environment.
Lopez et al. (2020) presented a circular shot geometry
as a tool for target oriented time lapse studies, checking
the illumination of seismic rays inside the reservoir using
long offsets. Costa et al. (2020) evaluated the refractive
waves trajectory via ray tracing in a Santos Basing pre-
salt model. Those previous studies needed to modify the
velocity model high frequency characteristics because of
the ray tracing equations technique limitations Hogan et
al. (2007). (Da Silva et al., 2022) checked the model
complexity effects applying density properties in seismic
modeling using a specific variation of the wave equation
for acoustic and isotropic media.

The objective of this study is to check the first arrival
seismic tomography availability in target oriented time
lapse studies with a circular shot geometry using Ocean
Bottom Nodes. The eikonal equation is employed in order
to preserve the high contrasted structures built by previous
seismic processing inversion steps (Balkaya et al., 2010;
Liu and Gu, 2012). Large offsets are considered to foment
the refracted waves that propagate inside the reservoir.
Although current studies on first arrival tomography are
focused on the adjoint-state inversion (Sei and Symes,
1994; Tromp et al., 2005; Taillandier et al., 2009), classical
tomography using eikonal equation plus ray tracing is
employed (White, 1989; Zhang and Toksöz, 1998; Balkaya
et al., 2010).

Theory and Methods

Problems are shown in ray equation solution using strongly
heterogeneous velocity models (Cervenỳ, 2001; Hogan et
al., 2007; Rawlinson et al., 2008). Because of that, the
eikonal equation is employed as a modeling kernel for
the first arrival tomography to preserve the base model
contrasts. The three-dimensional eikonal equation can be
written in the format below

(∂xT )2 +(∂yT )2 +(∂zT )2 = s2, (1)

where T and s are the travel time and the slowness
volumes respectively. There are a family of methods to
solve the eikonal equation. The modern highlights are the
fast methods and its improvements such as Fast Marching
Method (Sethian, 1996; Rawlinson and Sambridge, 2005;
Alton and Mitchell, 2009; Xu et al., 2019; Mirebeau and
Portegies, 2019; White et al., 2020), Fast Iterative Method
(Jeong and Whitaker, 2008; Dang and Emad, 2014; Hong
and Jeong, 2016; Cai et al., 2023) and Fast Sweeping
Method (Zhao, 2005, 2007; Bak et al., 2010; Luo and Qian,
2012; Noble et al., 2014; Waheed et al., 2015; Waheed and
Alkhalifah, 2017).

Eikonal solver

The formulation of Noble et al. (2014) is used to solve
eikonal equation in this work. Solving the equation
1 via finite difference, this solution sweeps the entire
domain in eight diferent directions applying operators using
specific neighboring points (Zhao, 2005). Accurate travel
times are computed due to the eight point operator in
its expanded form, initially developed by Vidale (1988)
in its truncated form. Although Noble et al. (2014)
formulation employs cartesian and spherical coordinates,
only cartesian coordinate operators were applied. Some
operators were developed based on limitations found in
Koketsu (2000) studies. To evaluate the first arrival travel
time outside the grid point, a trilinear interpolation is
applied at each receiver.
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To propagate realistic travel times each grid point has
homogeneous velocity and the analytical time is computed
in arbitrary source position to start solving the eikonal
equation. There is no performance optimization on the
eikonal solver and the experiment was concluded using
only one computer using the Xeon E-2286G processor unit.

4D anomaly construction

Figure 1 illustrates the velocity model of a typical Brazilian
pre-salt region, which is employed as our base model. It
is assumed that the base model is a good representation
of the reservoir, with its top and bottom horizons well
established. A monitor model is created by introducing
an anomaly due to water injection in the reservoir. A
two-dimensional Gaussian function was applied, at the
center of the model, slice after slice, increasing 2 % of
the velocity between horizons. Decaying is provided by
standard deviation in x and y directions assuming the
values of 500 m and 1000 m respectively. The model has
dimensions x,y,z of 22, 22, 8 km respectively with a fixed
spatial discretization of 50 m. Figure 2 shows the difference
between the base-monitor models. The target anomaly is
quite small, does not exceed 100 m/s, and the classical
tomography approach may identify this contrast according
with the first arrivals data.

Figure 1: Base model and initial velocity model for
the first arrival tomography. Circular shots (cyan)
and Ocean Bottom Nodes (white dots) employed to
simulate a reservoir (between horizons in white) monitoring
acquisition.

The geometry acquisition follow a circular shots design
containing 3006 in total and Ocean Bottom Nodes is applied
with 1029 in total. The shots and the nodes are spatially
spaced between 25 and 400 m each other respectively.
The circles offsets are approximately 6, 8 and 10 km from
the center of the model and large offsets are presented
in simulation, specifically up to 22 km. This geometry is
inspired in a real geometry used to acquire seismic data in
the Santos Basin - Brazil.

Figure 2: Subtraction of the base and the reference
monitor models. 4D anomaly created by a two-dimensional
Gaussian function applied between the reservoir horizons
limits (white). The target anomaly does not exceed 100 m/s
as a result of the 2 % increase in the velocity at the center
of the base model.

Data selection

To check the inversion availability, synthetic observed and
calculated first arrivals were generated using the base and
the monitor models respectively via reciprocity principle.
The data difference is obtained to verify the influence
of the geometry illumination with respect to the velocity
contrasts proposed to recover. Some receiver gathers do
not contemplate significant travel time difference, because
of that, nodes in the center of the circles were neglected,
as shown in Figure 4. This process reduced the execution
time of the tomography inversion significantly, as shown in
Table 1.

Figure 3: Minimum and maximum difference between
synthetic observed and calculated data, generated via
reciprocity principle, for each receiver gather. The absolute
error is the initial data misfit considered in tomography.

Table 1: Modeling run time for all data and selected data.

Run time
All data 3 h 21 min 53 s

Selected data 1 h 29 min 56 s
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With the decrease of Ocean Bottom Nodes in the
acquisition from 1029 to 469, the geometry map changed to
just use the largest offsets present. Shortest offsets bring
information only from top of the salt when just first arrivals
are considered.

Figure 4: Modified geometry acquisition. Red dots are the
nodes neglected, green dots are the nodes used and the
black dots are the 3006 shot positions.

Inversion approach

Classical first arrival tomography is used in this work.
Although eikonal equation was applied, ray tracing
technique was employed to generate the Fréchet
derivatives. Ray path was generated using the travel time
volume as a function. With the application of the gradient
descent method, we can trace ray paths from nodes to
source (Vidale, 1988). A non linear inversion and the L2
norm were applied to minimize the functional below

Φ(m) = ||d−G(m)||22 +λ ||Lm||22 (2)

where d is the observed first arrival data, G(m) is the
calculated first arrival data for the current model m, λ is
the regularization parameter and L is a discrete derivative
operator. In this work L works as Tikhonov regularization in
the form of the second order derivative operator to stabilize
the inversion scheme. Bulhões et al. (2021) show that
second order Tikhonov regularization has fast convergence
in first arrival tomography.

A linear system is solved at each tomography iteration. To
avoid matrix inversion, the least square problem was solved
applying a special type of conjugate gradient method that
compute solution of Ax = b without computing the Hessian
matrix (Hestenes et al., 1952). So, the problem we need to
solve iteratively is given by

AT A ∆m = AT
∆d (3)

where A is the composition of the Fréchet derivatives with
the second order Tikhonov regularization operator, ∆m is
the slowness model variation and ∆d is the difference of
the observed with the calculated data. Inversion objects
formulated explicitly follow the scheme

A =

[
Gi
L

]
; ∆d =

[
dobs −dcal

i
0⃗

]
; ∆m = mi+1−mi, (4)

where Gi is a matrix containing the length of rays per
inversion grid cell at iteration i, L is a second order

Tikhonov derivative operator with λ = 0.1, dobs is the
observed data, dcal

i is the calculated data in current model
mi and mi+1 is the model update at each iteration.

Figure 5: Classical tomography inversion flowchart.

The convergence criterion can be assigned by a tolerance
term or with a total number of iterations. In this work
10 iterations were necessary to a satisfactory model
reconstruction and the tolerance criterion was not needed.
Sparse matrix storage using coordinate lists was applied
to reduce computationally the problem. The least square
conjugate gradient solved the sparse problem in equation
3 with no more than 8 iterations. Between tomography
iterations, a Gaussian smoothing filter, with standard
deviation equal to 2 and 15 samples, was applied in
slowness variation to reduce artifacts caused by the
low illumination characteristics. The full workflow of
tomography inversion can be better visualized in Figure
5, where the results are the convergence curve with the
objective function norm and the recovered model at each
iteration.

Results and Discussions

The 4D anomaly recovered at the final iteration is
presented in Figure 6, overlayed with geometry acquisition
and the reservoir limits. This difference shows the high
influence of ray tracing and the model update preferred
regions inside the reservoir. All the slices are cutting
the model at the same positions. First, the 4D anomaly
recovered presents noise artifacts outside the reservoir,
inclusively on top of the salt. That is because the
illumination favoring the top of the salt and some noise was
expected to appear in this region. On the other hand, noise
amplitude is well below the target anomaly. Second, with
the refined grid inversion used (the same grid spacing than
the model, i.e. 50 m), the 4D anomaly recovered presents
reconstruction just near of the reservoir limit interfaces.
This characteristic is intrinsic in the modeling using the ray
tracing combined with the eikonal equation, where the ray
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paths are thin and the propagation waves prefer surfaces.

Figure 6: 4D anomaly reconstructed as a result of the first
arrival tomography. Reservoir limits marked with solid white
line. Geometry acquisition with opacity, shots in cyan and
nodes in white dots.

Figure 7: Convergence curve for the experiment.

As a result of the ray tracing kernel, the resolution of the
recovered model depends on the inversion grid refinement,
but the high velocity contrasts were conserved because
of eikonal equation usage. If the mesh were coarser, the
inversion would recover the velocities inside the reservoir,
but the recovered velocities would not respect the reservoir
limits, exceeding the limits both up and down. Total
inversion took 15 h 52 min 31 s to complete and the
convergence curve is presented in Figure 7. The objective
function L2 norm is small since the inversion beginning.
We have a reference and a recovered 4D anomaly, so
the difference of these anomaly can be found in Figure
8. With this analysis is possible to measure the wrong 4D
anomaly reconstruction and this makes evident the non-
reconstruction in the center of the reservoir, but only in the
upper and lower limits. These characteristics are clear in
the projections of the model in ZY and ZX planes. The
noise artifacts outside the reservoir round between 5 to 15
m/s, the maximum and minimum error are 84.5 and −90.3
m/s respectively, the mean error is −0.015 m/s and the
standard deviation is 1.45 in all 4D difference volume. The
data after inversion was represented in Figure 9, just for
the nodes considered in inversion. The inversion reduced

the data misfit from 0.015 to 0.003 s on absolute average,
comparing with the Figure 3 at the same time scale.

Figure 8: 4D anomaly difference obtained from the
subtraction of the reference with the recovered anomaly.

Figure 9: Travel time difference at each receiver gather only
using the selected nodes. Data generated with the 10th
iteration recovered model.

Conclusion

The classical first arrival tomography can bring information
of small velocity contrasts at the reservoir limits without
change the base model significantly, but not inside the
reservoir completely due to the refracted waves tendency
propagation at the layer interfaces. The method obtained
fast convergence without distinguished noise and the
recovered anomaly respected the velocity range of the
known anomaly. The significant model update, in the
ideal case, is only on the refractive interfaces. The target
oriented geometry acquisition scheme brought reservoir
illumination, but not enough for classical tomography using
eikonal plus ray tracing kernels. The way to update inside
the reservoir is to generate a coarser grid inversion, but it
would imply in a low resolution recovered model where the
update velocities would exceed both limits of the reservoir.
The adjoint-state tomography might be more suitable for
this low illumination case, due to the non-use of ray tracing
kernels. It could bring more information inside the reservoir
because it use total information of the eikonal equation.
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