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Abstract

This work is developed for modeling of stresses, with a
focus on low and high-pressure zones in a sedimentary
basin, that relate to a reservoir and petroleum generator
zones. The numerical experiment is a demonstration of the
principle that the first stress invariant controls the geology
described as a process of the mechanics of solids under
the influence of gravity attraction. The physical problem is
constructed as a boundary value problem (BVP) involving
the Beltrami-Michell equation with Dirichlet conditions,
where we use the method of Green’s function represented
by a Fourier series for the solution of the BVP. The
boundary conditions are given by stress distributions along
the border of the target volume. Once the rock pressure
distribution is obtained and boundary conditions are
defined, the solution of the BVP allows the calculation of
the stress components distribution (normal and tangential)
inside the target volume. The relationship between rock
pressure and stress components is established by the
Beltrami-Michell problem, which has the form of a Poisson
equation. The proposed method was applied in target
zones containing possible reservoirs, where we used the
Beltrami-Michell equation to calculate stress components
variations in the region of interest.

Introduction

The present stress modeling is related to the geological
scale, and not to the local engineering scale that acts
during drilling. Therefore, the interpretation is centered on
identifying low and high-pressure zones in the sedimentary
basin, to map and/or extend a potential productive zone.
The main motivation is that low and high-pressure zones
act as natural pumps for fluids (water, oil, and gas), that
tend to accumulate in the low-pressure zones.

The work is motivated by the natural description of a
sedimentary basin based on the mechanics of solids under
gravity loading, where the effect is the only stress agent
in the sedimentary basin. This modeling is a data-
driven process, where the necessary information is seismic
data: distribution of P and S wave velocities, Vp(x), Vs(x)
and density, ρ(x). From the geomechanical principle, a
reservoir corresponds to a low-pressure zone capped by
a high-pressure zone, and controlled by the γ =

Vs(x)
Vp(x)

ratio
contrast across the interface of these zones. Besides
the mechanical conjecture, the principles of the petroleum
geology system are also applied.

It is described in the specialized literature, that the pressure
variation in the subsurface is directly related to the first
stress invariant. Therefore, the method is to predict the
stress tensor components (normal and tangential) from
the first stress invariant (defined as the average of the
normal stresses, and called “rock pressure”). The problem
is structured as a BVP for the Beltrami-Michell equation
under Dirichlet conditions and applied in a specific target
zone. The boundary conditions for the target zones are
defined from the stress components values, based on the
mechanics of solids under gravity loading.

The major part of the study was to validate the numerical
solution of the Beltrami-Michell equation for a geological-
geophysical model, where the geological complexity poses
a challenge in predicting stress components in a target
zone. The Beltrami-Michell equation considers a constant
value for the Poisson’s ratio, which is only realistic as an
average for a complex geological media. Therefore, we
investigate how gradients in the elastic parameters can
affect the solution for the stress components in a target
zone.

Method

Equilibrium Equations

The modeling considers the vertical gravity loading as a
stress-causing agent in the sedimentary basin, without
considering lateral tectonic forces. Therefore, the system
of equilibrium equations is defined as follows:

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂ z
= 0, (1)

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂ z
= 0, (2)

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂ z
= ρg, (3)

where ρ is the bulk density and g is the gravity acceleration.

Linear Hooke’s Law

For an isotropic medium, the linear relationship between
stress σi j and strain εi j at a certain point is given by
Hooke’s law:

σi j = λθδi j +2µεi j, (4)

where µ and λ are the Lame’s elastic parameters, θ the
dilation, δi j the Kronecker delta, εi j the strain tensor.

The normal vertical stress is defined as the overburden
weight of the rock formation and fluids down to the
reference point. From equilibrium equations (1), the normal
vertical stress is defined by:

σzz(z) = g
∫ z

z0

ρ(z)dz, (5)
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where ρ is the bulk density, z0 = 0 is the initial depth, z is
the depth point of interest, and g is the gravity acceleration,
considered constant in the interval (z0,z).

Using Hooke’s law for the isotropic medium (4), and
assuming that each subsurface element is confined, we
consider the absence of lateral deformations (εxx = εyy = 0).
Consequently, the horizontal normal stresses σxx and σyy
are written as a function of the normal vertical stress σzz:

σxx = σyy = (1−2γ
2)σzz, (6)

where γ is the ratio of the seismic velocities Vp and Vs,
functions of density and Lamé elastic parameters

γ =
Vs

Vp
, Vs =

√
µ

ρ
, Vp =

√
λ +2µ

ρ
. (7)

A formal measure, named rock pressure, Pr, is defined as
a simple average of the normal stresses in the form:

Pr =
1
3
(σxx +σyy +σzz). (8)

The stress is non-hydrostatic, and an important symmetry
condition in the model is σxx = σyy. For modeling a real
complex case, we can consider that σxx, σyy, and σzz are
different from each other.

The Beltrami-Michell Equation

The Beltrami-Michell equation form a set of compatibility
relations that describes the distribution of stress in a solid
medium as a boundary value problem (Sadd, 2005; Saada,
1974):

∇
2
σi j =−

3
1+ν

∂ 2Pr

∂xi∂x j
− ν

1−ν
δi j∇ ·F−

(
∂Fi

∂x j
+

∂Fj

∂xi

)
, (9)

where σi j is the stress tensor components, Pr is the rock
pressure, ν is the Poisson’s ratio, F is the gravity internal
force vector and δi j is the Kronecker delta. Adding the
equations corresponding to the normal stresses, we obtain
an important relationship between body forces F and the
rock pressure Pr:

∇ ·F =−3(1−ν)

1+ν
∇

2Pr. (10)

The Beltrami-Michell partial differential equation
establishes a relationship between the rock pressure,
Pr, and the stress field, σi j. Therefore, once the rock
pressure field is known, the stress components can be
obtained for a specific region of interest by solving the
differential equations (9) as a boundary value problem.

The elastic parameter ν is the main elastic parameter that
affects the Beltrami-Michell equation. This parameter is
limited to the range−1< ν < 0.5 for isotropic materials, with
typical engineering values between 0.2 < ν < 0.5 (Novacky,
1975; Boresi and Schmidt, 1965). In the Beltrami-Michell
equation, the Poisson’s ratio is constant in its application
volume. A variation in this parameter causes deviations in
the solution for the stress components σi j.

Boundary Value Problem and Solution Decomposition

The BVP associated with the Beltrami-Michell equation
consists of finding a solution within a domain V (target-
zone) subject to boundary conditions in S. Therefore, the
Dirichlet boundary value problem (DBVP) applied to the
Beltrami-Michell equation is formulated as:

∇
2
σi j(x) = fi j(x), (in V ),

σi j(x) = bi j(x), (on S), (11)

where σi j(x) is the stress component field, fi j is the
right-hand side of the Beltrami-Michell equation and bi j(x)
specifies the solution value at the boundary S, as illustrated
in the Figure (1).

Figure 1: Representation of the Dirichlet boundary value
problem (DBVP) applied to the Beltrami-Michell equation.
The interior of the closed volume (in gray) is represented
by V , and its boundary by S. The function bi j(x) defines
the boundary conditions imposed on the stress component
field σi j(x).

The solution of the BVP (11) can be simplified by
decomposing it into two sub-problems:

1. Homogeneous sub-problem, defined by

∇
2
σ
(h)
i j (x) = 0, (in V ),

σ
(h)
i j (x) = bi j(x), (on S), (12)

2. Nonhomogeneous or particular sub-problem, defined
by

∇
2
σ
(p)
i j (x) = fi j(x), (in V ),

σ
(p)
i j (x) = 0, (on S). (13)

Therefore, the complete solution σ
(c)
i j is obtained using the

use superposition to combine the separate solutions:

σ
(c)
i j (x) = σ

(h)
i j (x)+σ

(p)
i j (x), (14)

where σ
(h)
i j is the homogeneous solution and σ

(p)
i j is the

particular solution.
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Homogeneous Solution in a Rectangular Target Zone

This sub-problem aims to determine a solution for
Laplace’s equation in a domain defined by a rectangle of
length L and height H subject to prescribed values on
the boundary. Thus, the desired solution is a function
ϕ(x,z) that satisfies Laplace’s differential equation and the
Dirichlet boundary conditions in the Figure 2.

Figure 2: Boundary value problem for Laplace’s equation
in a rectangle with Dirichlet conditions.

The solution ϕ(x,z) can be written as a Fourier series in the
form:

ϕ(x,z) =
∞

∑
n=1

An
sinh [pn(L− x)]

sinh(pnL)
sin(pnz)+

∞

∑
n=1

Bn
sinh(pnx)
sinh(pnL)

sin(pnz)

+
∞

∑
n=1

Cn
sinh [qn(H− z)]

sinh(qnH)
sin(qnx)+

∞

∑
n=1

Dn
sinh(qnz)
sinh(qnH)

sin(qnx) ,

(15)

where the Fourier coefficients An, Bn, Cn and Dn are
calculated by

An =
2
H

∫ H

0
b1(z)sin(pnz)dz, Bn =

2
H

∫ H

0
b2(z)sin(pnz)dz,

Cn =
2
L

∫ L

0
b3(x)sin(qnx)dx, Dn =

2
L

∫ L

0
b4(x)sin(qnx)dx,

and the parameters pn and qn are the angular frequencies
given by

pn =
nπ

H
, qn =

nπ

L
.

Particular Solution in a Rectangular Target Zone

This sub-problem consists to find a solution for Poisson’s
equation in a domain defined by a rectangle subject to
boundary values. The desired solution is a function ϕ(x,z)
defined on the rectangular domain governed by Poisson’s
equation and the boundary conditions shown in Figure 3.

Figure 3: BVP for the Poisson’s equation in a rectangle with
Dirichlet conditions.

In this case, the solution ϕ(x,z) is given by:

ϕ(x,z) =
∫ L

0

∫ H

0
f (ξ ,ζ )G(x,z | ξ ,ζ )dζ dξ , (16)

where G is the Green’s function for the Laplacian operator
(∇2), given by Fourier series (Polyanin, 2016)

G(x,z | ξ ,ζ ) = 2
L

∞

∑
n=1

sin(pnx)sin(pnξ )

pn sinh(pnH)
En(z,ζ ), (17)

where

En(z,ζ ) =

{
sinh(pnζ )sinh [pn(H− z)] for H ≥ z > ζ ≥ 0,
sinh(pnz)sinh [pn(H−ζ )] for H ≥ ζ > z≥ 0.

and the parameter pn is the angular frequency given by

pn =
nπ

H
.

Results

This numerical experiment was the calculation of the stress
components σi j in a rectangular target zone containing
a reservoir in the Marmousi geological basin (Figure 4).
The rock pressure field is calculated using the velocities
and density available distributions. The purpose of this
experiment was to analyze the stress distribution along a
reservoir zone in a plausible geological context.

Figure 4: Structural elements, formations, and lithologies
of the Marmousi basin (Martin et al., 2006). The black
rectangle represents the selected target zone. The vertical
exaggeration is of the order 4:1.

Eighteenth International Congress of The Brazilian Geophysical Society



STRESS PREDICTION USING BELTRAMI-MICHELL METHOD 4

Rock Pressure and Target Zone Selection

Figure (4) displays the selected target zone, which includes
the anticline structure containing the gas and oil cap,
located around 3000 meters in depth and between 10000
and 12000 meters in horizontal distance. Figures (5) and
(6) show, respectively, the distribution of rock pressure and
the selected target zone used in the calculating of stress
components.
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Figure 5: The rock pressure distribution, Pr(x,z), for the
Marmousi model. The black rectangle represents the
selected target zone used in the application of the Beltrami-
Michell problem.
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Figure 6: Target selected from figure 5.

Results of the Beltrami-Michell Problem

Figure 7 shows the complete solution for the normal vertical
stress, σ

(c)
zz . This solution maps a low-stress zone at the

top of the anticline. Figure 8 shows the normal vertical
stress from direct modeling [equation (5)] and presents a
smooth and increasing behavior with depth, with a smooth
horizontal variation. The deviation between direct modeling
and the Beltrami-Michell method is close to 15% for the
vertical stress component (Figure 9).

Figure 10 shows the complete solution for the normal
horizontal stress, σ

(c)
xx . This solution maps low stress at

the top of the anticline, highlighting the reservoir shape.
Figure 17 shows the normal horizontal stress from direct
modeling [equation (6)] and maps the low-stress zone and
shape of the anticline structure. The deviation between
direct modeling and the Beltrami-Michell method is close
to 30% for the horizontal stress component (Figure 12).

For the shear component, the complete solution σ
(c)
xz [figure

13] presents low shear stress at the top of the anticline, and
high values on the sides. This indicates a larger tendency
for fracturing in regions further away from the reservoir.
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Figure 7: The complete solution for the normal vertical
stress, σ

(c)
zz = σ

(p)
zz +σ

(h)
zz . The Poisson’s coefficient used

was ν = 0.35.
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Figure 8: Normal vertical stress calculated by direct
modeling.
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Figure 9: Percentual deviation between the direct modeling
and the Beltrami-Michell method for the normal vertical
stress.
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Figure 10: The complete solution for the horizontal normal
stress σ

(c)
xx = σ

(p)
xx + σ

(h)
xx . The Poisson’s coefficient used

was ν = 0.35.
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Figure 11: Normal horizontal stress calculated by direct
modeling.
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Figure 12: Percentual deviation between the direct
modeling and the Beltrami-Michell method for the normal
horizontal stress.
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Figure 13: The complete solution for the shear stress
σ
(c)
xz = σ

(p)
xz +σ

(h)
xz .

Correction of deviations in the Beltrami-Michell solution

The variation of the Poisson’s coefficient in the target
zone generates deviations in the solutions of the Beltrami-
Michell equations. However, the complete solutions σ

(c)
zz

and σ
(c)
xx reconstruct the rock pressure distribution very

similar to the original input data. This observation indicates
that the deviations present in the horizontal and vertical
components are compensated when we calculate the rock
pressure using the complete solutions. We can express
this observation by splitting the complete solution in the
following way:

P(c)
r =

2σ
(c)
xx +σ

(c)
zz

3
, (18)

P(c)
r =

2
3

[
σ
(h)
xx +σ

(p)
xx

]
+

1
3

[
σ
(h)
zz +σ

(p)
zz

]
. (19)

From the comparison between the vertical stress
component obtained in the direct modeling, σzz, and
the homogeneous solution σ

(h)
zz (Figures 14 and 15), we

observe that this component presents a harmonic behavior,
being better described only by the homogeneous solution:

σ
(c)
zz ≈ σ

(h)
zz . (20)

Considering σ
(c)
zz to be harmonic and using the rock

pressure equation (19), the deviation in the σ
(c)
xx component

is compensated for in the following way:

σ
(c)
xx ≈ σ

(h)
xx +σ

(p)
xx +

1
2

σ
(p)
zz , (21)

where the presence of the particular term 1
2 σ

(p)
zz corrects

the calculation of the horizontal stress (Figures 16 and 17).
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Figure 14: The homogeneous solution for the vertical
normal stress σ

(h)
zz .
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Figure 15: Normal vertical stress calculated by direct
modeling.

0.95 1 1.05 1.1 1.15 1.2
Distance (m) 10 4

2850

2900

2950

3000

3050

3100

3150

D
ep

th
 (

m
)

16

18

20

22

24

26

P
re

ss
u

re
 (

M
P

a)

Figure 16: Complete solution with correction for normal
horizontal stress, σ

(c)
xx ≈ σ

(h)
xx +σ

(p)
xx + 1

2 σ
(p)
zz .
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Figure 17: Normal horizontal stress from direct modeling,
σxx.

Conclusions

The Marmousi model is characterized by the complexity
of the input model, which includes the geometry of
the geological structure and the distribution of physical
parameters. An important question investigated in this
experiment was whether the presence of gradients in
velocity distributions can drastically change the solution.
The Beltrami-Michell equation admits constant parameter
values, and also isotropic, homogeneous, with smooth
variations. In this experiment, our calculations were
performed in the Marmousi model to measure the
limitations of the method.

Poisson’s coefficient (ν) is the main elastic parameter that
affects the results of the Beltrami-Michell method. The
presence of large velocity variations generates deviations
in the expected values of the stress components. This
work proposes a form of correction for these deviations
based on the decomposition of the complete solution into
homogeneous and particular solutions, bringing the results
closer to those obtained by direct modeling.

This modeling should be analyzed on the geological scale,
and not on the drilling engineering scale. The geological
scale serves to characterize the geological basin, pointing
towards a possible new reservoir site, or extending a
productive reservoir. The methodology shows to be
consistent in bringing out special details of the stress
distribution, and the low and high-pressure zones that act
as natural sucking pumps for oil and gas accumulation.
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