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Abstract

This study presents an example of 1D inversion of
synthetic 3D data from horizontal and vertical magnetic
dipoles, focusing on the configurations used in the EM34
equipment. The inversion code is an implementation
of the Gauss-Newton method with Levenberg-Marquardt
iterations, with the inclusion of smoothness constraints to
the model parameters. The 1D inversion generates a
layered model for each measurement point in an EM34
survey. The synthetic data is from a 3D model composed
of a two-layer background with a 3D conductive block close
to the surface. The results indicate a minimum distance
from the 3D conductive body for which its influence on
the responses is small enough to make the 1D inversion
feasible. Also, the study illustrates the insurmountable
unsuitability of applying 1D inversion to data acquired over
truly three-dimensional geo-electrical structures.

Introduction

Near surface electromagnetic surveys are routinely
performed for a large number of applications, including
mineral and ground water exploration, environmental
monitoring, archaeological studies and many more. In the
past, interpretation was only performed directly from the
acquired data, either in the form of electromagnetic field
components or apparent resistivities. Today, the available
computer resources (hardware and software) allow for the
application of inversion methods that usually yield better
data for a more accurate interpretation.

Performing inversion of three-dimensional electromagnetic
data is a highly costly computational task. Therefore,
it is a common practice to invert data using 1D layered
models, which is a fast process that may generate accurate
results if the geological environment from which the data
were acquired is at least approximately one-dimensional.
However, in true three-dimensional cases, a quick 1D
inversion simply can not be applied, for it will generate
meaningless solutions.

This paper shows an illustration of these problems by 1D
inverting synthetic electromagnetic data generated from a
simple 3D model. For this example, we have modeled data
from horizontal and vertical magnetic dipoles, as used in

the Slingram method, with a focus on the EM34 equipment.

The inversion code is an implementation of the Gauss-
Newton method with Levenberg-Marquardt iterations
(Gómez-Treviño et al., 2002; Pujol, 2007) and the inclusion
of smoothness constraints (Constable et al., 1987) to
the model parameters, which in this case are the layer
resistivities.

The results indicate that fast 1D solutions must be used
with caution and that the geophysicist must be able to
recognize the instances when they are truly useful.

Methodology

The Slingram method used in the EM-34 equipment allows
for the estimation of electrical conductivity in subsurface
through measurements of the secondary magnetic field
variation (McNeill, 1980). It operates by measuring the
electromagnetic field in the frequency domain and its
interactions with the lithological medium. The equipment
consists of two coils: the first one is energized by an
alternating current and is responsible for generating the
primary electromagnetic field, which in turn induces current
in the subsurface, producing a secondary electromagnetic
field. The second coil acts as the receiver, positioned
at fixed distances from the transmitter in pre-determined
configurations.

In the coplanar configurations used by the EM34
equipment, the horizontal (Hy) and vertical (Hz)
components of the magnetic fields are generated by,
respectively, the horizontal (HMD) and vertical (VMD)
magnetic dipole sources.

Forward modeling

For the layered (1D) problem, the calculation of the fields
in the receiver position requires the numerical evaluation
of improper integrals of the Hankel transform (Ward &
Hohmann, 1988, pp. 208 and 223). The 1D solutions are
used in the calculation of the magnetic field in the forward
1D problem and also to calculate the electric field from the
sources to be used as primary field in the 3D formulation.
For the VMD the integrals are evaluated using the digital
filter presented by Werthmüller et al. (2019) and for the
HMD using the method of Quadrature With Extrapolation
(Key, 2012).

The three-dimensional modeling program is an
implementation of the Vector Finite Element method, as
described by Jin (2015), with a secondary field formulation
to calculate directly the magnetic field. The finite element
3D mesh is built with the TETGEN mesh generator (?). The
method generates a very large and sparse linear system
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of equations that is solved using the PARDISO software
(Schenk et al., 2001).

1D inversion

Given the field observations contained in the vector y, the
objective of the inversion is to determine the values of a
parameter vector p that generate synthetic data that best
fit the observations. In this case, the observed data are
the apparent conductivities or the imaginary component of
the magnetic field and the model parameters are the layer
resistivities in the model.

The functional to be minimized Φ(p) is defined as:

Φ(p) = φ
d(p)+α φ

v(p), (1)

where

φ
d(p) =

1
2

m

∑
i=1

[y0
i − fi(xi,p)]2 (2)

is the functional that represents the fitting of the
observations by the data generated by the mathematical
model f , which depends on p and independent variables
such as frequency and measurement positions. The
constraint function

φ
v(p) =

1
2
(p1 −p2)

2 +(p2 −p3)
2 + · · ·+(pn−1 −pn)

2] (3)

defines a priory equality relationships between adjacent
parameters to impose smoothness in the solution. In the
objective function (1), α is a positive scalar, known as
the regularization parameter, whose function is to weigh
the relative importance of the information provided by the
constraint relations.

The Gauss-Newton method defines the sensitivity matrix
A, whose elements are

A =
∂φ d

i
∂ p j

=−
m

∑
i=1

[y0
i − fi(xi, p j)]

∂φ d
i

∂ p j
, (4)

and the residual vector

δyi = y0
i − fi(xi,p j). (5)

Then the method produces an estimate of p that minimizes
the objective function (eq. 1) by iterating the equation

(AT A+αMT M)δpk = AT
δy+αMT Mp, (6)

The relationships between parameters that define the
constraint function (eq. 3) are expressed in the matrix M
as

M =



1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0

...
0 0 0 . . . 1 −1


, (7)

which leads to the square matrix

MT M =



1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 1


(8)

The Marquardt technique aims to ensure that the
convergence estimate always takes a step in the
descending direction of the gradient. This is achieved by
alternating between an estimate using the Gauss-Newton
method and taking a small step in the descending direction
of the gradient. Combining the two kinds of steps for
minimizing the fitting functional into a single equation
is achieved by adding a positive scalar λ , called the
Marquardt parameter, to the diagonal of the Hessian matrix
of the functionals, so that the iteration becomes(

AT A+αMT M+λ I
)
,δpk = AT

δy+αMT Mp, (9)

The value of λ is decreased in an iteration if the value of
the objective function Φ decreases. Otherwise, its value is
increased and a new δp is generated. This step is repeated
until Φ decreases in the iteration.

The iteration of equation 9 is repeated until the objective
function reaches a minimum or a maximum number of
iterations is reached, which signifies that the process didn’t
converge.

Results and discussions

The model is composed of only two layers. The first
layer has a resistivity of 50 Ω m and a thickness of 30
meters, and the second layer is an infinite basement with a
resistivity of 500 Ω m. Embedded in the first layer, at a 2 m
depth, is a conductive (10 Ωm) cube with a 10 m edge. A
schematic example of the model is shown in figure 1.

Figure 1: 3D model that generated the synthetic data.

The synthetic data were generated simulating the three
configurations of the EM34 equipment, with three
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measurements at each point for the HMD and the VMD
coplanar configurations, using three offset/frequency pairs:
10 m at 6.4 kHz; 20 m at 1.6 kHz; and 40 m at 400 Hz.
Data were generated at 200 positions, distributed along a
profile ranging from -500 m to 500 m.

This study performed the joint inversion of synthetic data
from both the HMD and the VMD at the same measurement
positions. The 1D inversion was performed using the
regularization parameter α = 10−9. The interpretive model
has only 7 layers with varying thicknesses.

At positions far from the 3D block the inversion is able to
fit the data, because the influence of the block is small. To
illustrate this behavior, figure 2 shows that at 500 m from
the block the inversion is able to capture the values of both
layers by closely fitting the data.

At positions above the block, on the other hand, it is
impossible for the 1D inversion to find an adequate fitting.
Figure 3 shows the results for the position exactly above
the center of the block. In this case, the inversion can not
converge because the data from a layered model can not
reproduce those which are under the influence of the 3D
body. This means that the layer resistivities produced at
the end of the (non converging) process are meaningless
and must not be interpreted in any way.

The results from all 200 points are shown in figure 4 for all 6
configurations. These plots show the measured magnetic
component at each point, comparing the original data with
those resulting from the inverted layered models. It is clear

that only at distances over at least twice the offsets there is
an adequate fit between the curves.

A final illustration comes from building the resistivity section
from the models generated by the inversion. The lateral
borders of the section in figure 5 reproduce the layered
model, but the structure observed in the central part has
no correspondence whatsoever to the true model that
generated the data.

Conclusions

The results are an indication the limits of applying one-
dimensional inversion to problems that require more
complex and expensive solutions. They are just
exactly what is expected (1D solutions are good for
1D environments and bad otherwise), but this is an
illustration of a situation that often arises in the practice of
electromagnetic geophysical methods.

This study is meant as a cautionary note to those who work
with near surface electromagnetic data and need to go
beyond interpreting apparent conductivities: 1D inversion
is fast and cheap, but do not trust its results blindly, under
penalty of ending with interpretations that have no relation
to the actual geology of your study area.
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Figure 2: Inversion results at 500 m from the 3D block. Left:
Layered models; Right: Data fit.
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Figure 3: Inversion results above the center of the 3D block.
Left: Layered models; Right: Data fit.
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Figure 4: Comparison between the original data and those generated by the 1D inversion.
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Figure 5: Resistivities from the inverted layered models.
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