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Abstract

Seismic processing uses a time-domain dataset to
gather information about subsurface geological structures.
However, lateral velocity variations and anisotropic
contributions can cause inaccuracies in the inversion
procedure. Determining whether a medium has intrinsic
anisotropy and vertical heterogeneity is crucial. In order
to achieve that, we explore the feasibility of diffraction
traveltime parameters that can be used as an intrinsic
anisotropy signature indicator. By analyzing the behavior
of diffraction velocity as a function of the traveltime
slopes estimated from the dataset, we can determine the
average measurement velocity using a cluster of diffraction
responses. This calculation helps determine whether
the medium has lateral velocity variations based on the
direction (anisotropy) or position (heterogeneity). The
preliminary analysis shows that the proposed approach
has the potential to be incorporated into seismic processing
as an additional tool to identify anisotropic signatures
distorting the estimated normal moveout velocities.

Introduction

Characterizing subsurface geologic structures to determine
the location of hydrocarbon reservoirs can be achieved
through a reliable seismic data processing framework.
The presence of lateral velocity variation introduces an
additional challenge to this task. Therefore, when such
a phenomenon is caused by anisotropy, the kinematic
parameters used for the inversion procedure are distorted
with anisotropic contributions. The anisotropy may
be intrinsically related to the preferred orientation of
anisotropic mineral grains, induced by thin isotropic layers
with thicknesses less than wavelength or related to fracture
orientation. Based on these conditions, an analysis of how
the lateral velocity variation changes wavefront kinematics
is necessary.

The characterization of transversely isotropic (TI)
symmetries by parameters given by Thomsen (1986)
made it possible to incorporate the extraction of anisotropy
parameters into seismic data. Alkhalifah (1997) presented
a framework for a real field-data example that is based

on reflections, and parameters are extracted using an
offset-dependent nonhyperbolic traveltime. However, this
procedure is only practical in anisotropic homogeneous
media. When vertical heterogeneous media is considered,
the anellipticity attribute η loses its kinematic interpretation
and works as a best-fitting parameter. Consequently,
the result is a better normal moveout velocity (VNMO)
estimation in this case. Besides, it is difficult to determine
if an influence of the Thomsen parameter δ exists when
the interval velocity is estimated. As for reflected waves,
diffracted waves also have relevant information regarding
the geological structure in the subsurface, with a notable
advantage that the diffraction event as a whole is related
to a single point in the subsurface. Therefore, determining
the kinematic contributions for diffraction response is
a topic of great interest, with applications varying from
structural characterization to velocity analysis.

In this work, we explore the feasibility of diffraction
traveltime parameters as indicators of an anisotropy
signature. By extracting the attributes of slope and
curvature from the diffraction traveltime, it is possible to
determine a velocity given in function of diffraction slopes.
Note that the normal moveout velocity depends on the
slope, as shown in Alkhalifah and Tsvankin (1995). In our
framework, two signatures are related to anisotropy and
lateral heterogeneity, which can be obtained from the data.

Our synthetic experiments in vertical transversely isotropic
(VTI) media show that the variation of the measured
velocity is considerably tiny in the presence of pure vertical
heterogeneity and has higher deviations in the presence
of anisotropy. Based on this, we also determine the
average measurement velocity using a cluster of diffraction
responses, which we refer to calculate if the medium
has lateral velocity variations based on the direction
(anisotropy) or position (lateral heterogeneity).

Finally, this approach can be incorporated into seismic
processing as an additional tool for users to make
decisions regarding the anisotropic signatures distorting
the estimated VNMO.

Formulation

In order to perform our analysis, we will briefly describe
the tool used to detect diffractions in a seismic-response
dataset. Besides, we are considering this dataset
modeled along a single horizontal line with the midpoint
and half-offset defined as (m,h) from which one can
derive source-receiver coordinates. A super gather of
source-receiver pairs is assumed to be arbitrarily located
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concerning a reference pair (m0,0), called the zero-offset
(ZO) coordinates. Considering no prior knowledge about
the subsurface geological structures, the challenge is to
make the extraction of kinematic parameters whit precision
from the seismic data. In order to perform such parameter
extraction, the tools given by Faccipieri et al. (2016) and
Coimbra et al. (2019) can be used, for example. The
traveltime approximation that describes the kinematics
behind these cited operators can be described as

tD(m,h) =
1
2

[√
(t0 +A∆s)2 +C(∆s)2

+
√
(t0 +A∆r)2 +C(∆r)2

]
, (1)

where tD(m,h) is the diffraction traveltime approximation,
∆s=∆m−h, ∆r =∆m+h, ∆m=m−m0, and t0 is the two-way
traveltime on the reference ray (m0,0). Also, A is the slope
of traveltime in the midpoint direction, and C is a species of
the slowness squared, which can be specified in terms of
derivatives of traveltime t as

A =
∂ t
∂m

∣∣∣∣
(m0,0)

, and C = t0
∂ 2t
∂h2

∣∣∣∣
(m0,0)

. (2)

In practice, we can obtain the diffraction parameters
of equation (1) through traveltime parameter search
algorithms such as Ribeiro et al. (2023). Besides, as
shown in Faccipieri et al. (2016), an optimal aperture in
midpoints (based on the Fresnel zone) is necessary to
achieve suitable results. Such parameters describe a time-
migration velocity related to the points (m0,0) in a ZO
section, corresponding to the same point in depth.

If we set A = 0 and m = m0 in equation 1, we find the
common-midpoint (CMP) moveout, which is given by

tD(m0,h) = tCMP(h) =
√

t2
0 +C0h2 , (3)

where we can interpret the parameter C0 in terms of VNMO
as

C0 =
4

[VNMO(0)]2
. (4)

The parameter C0 represents a wavefront curvature
measured with respect to the imaging ray (Hubral, 1983).
Additionally, by equation (2), we can define a time-
migration (TM) velocity, VTM, in the function of parameter
A as (Coimbra et al., 2019)

VTM(A) =
2VNMO(A)√

4+A2V 2
NMO(A)

. (5)

Therefore, by measuring the TM velocity as a function
of the kinematic parameter of the slope, we can extract
meaningful information on the kinematic attributes of
wavefront propagation. Furthermore, the equation (5)
describes such behavior of this velocity on the kinematic
response of a diffraction wavefront.

TM-velocity variation in homogeneous media

Let us start our analysis with the simplest case of an
isotropic homogeneous medium with constant velocity V .

For this case, the physical interpretation of the kinematic
parameter A is given by

A =
2sin(β )

V
, (6)

where β is the angle formed between the phase vector of
the ray and the normal vector to the measurement surface
at a midpoint m0. Therefore, in this media, VNMO(A) is given
by

VNMO(A) =
2V√

4−A2V 2
=

V
cos(β )

. (7)

Replacing the equations (7) into (5), we have VTM(A) = V .
This implies that the TM velocity is independent of A,
indicating no velocity variation. Now, let us examine the
VTI Media (VTI) case for a homogeneous case considering
the elliptic case, i.e., the Thomsen parameters ε = δ .
Following Alkhalifah and Tsvankin (1995) we have the
exact expression for VNMO, here in terms of A, given by

VNMO(A) =
2VNMO(0)√

4−A2V 2
NMO(0)

, (8)

with VNMO(0) = Vp
√

1+2δ and where Vp is the vertical
velocity of P-wave. Again, replacing the equation (8) into
(5), we have VTM(A) = VNMO(0), which implies that the TM
velocity is constant along the diffraction response. For
the general homogeneous case, consider true a weak
approximation for VNMO given by Alkhalifah and Tsvankin
(1995) in terms of the slope A as

VNMO(A) =
2VNMO(0)√

4−A2V 2
NMO(0)

[1+ξ F(A)] , (9)

where ξ = ε −δ is the anisotropy correction, and

F(A) =
y(4y2 −9y+6)

1− y
with y =

A2

C0
. (10)

Replacing equation (10) into (5), we have an expression for
the TM-velocity counterpart (valid when |ε|≪ 1 and |δ |≪ 1)
given by

VTM(A) =
VNMO(0)√

1+2yξ F(A)+ yξ 2F(A)2
[1+ξ F(A)] . (11)

Observe that ξ = 0 implies the medium is isotropic or
elliptic. Indeed, the above expression works well even for
moderate anisotropy in the small-A limit, making it possible
to use it to obtain the best fit concerning parameter ξ ,
considering the velocity VTM obtained from a dataset.

Results in a homogeneous VTI media

In this section, we analyze two homogeneous anisotropic
examples. First, we take a VTI medium with ε = 0.195,
δ = −0.220, and vertical P and S velocities given by
Vp = 3292 m/s and Vs = 1768 m/s, respectively. Using the
diffraction traveltime approximation, given by equation (1),
to extract A and VTM(A) from a diffraction response
located at a depth of 1000 m. Figure 1 shows the TM
velocity variation (blue line) as a function of slope A
obtained by fitting diffraction traveltime approximation with
the diffraction response. Also, in Figure 1, we have the
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Figure 1: TM velocity measured (blue line) of a diffraction
embedded in a homogeneous VTI medium with ε = 0.195,
δ =−0.220 and velocities Vp = 3292 m/s and Vs = 1768 m/s.
The red dashed line represents the best fitting using
equation (11).

best fit of the curve described by the equation (11) (red
dashed line). From that, the extracted anisotropy correction
parameter is ξE = 0.5. However, its original value is ξ =
0.4180, resulting in an absolute error |EA|= 0.082.

Second, we take a VTI medium with ε = 0.110, δ =
−0.035 considering P and S velocities given by Vp =
3368 m/s and Vs = 1829 m/s, respectively. Again,
Figure 2 shows the TM velocity variation (blue line)
as a function of slope A obtained by fitting the curves
between diffraction traveltime approximation and diffraction
response. Moreover, Figure 2 also shows the best fit of
the curve described by the equation (11) (red dashed line).
In this second experiment, we see a better fit with an
extracted anisotropic correction parameter of ξE = 0.1735.
The modeled parameter is given by ξ = 0.1450, resulting in
an absolute error given by |EA|= 0.0285.
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Figure 2: TM velocity measured (blue line) in a
homogeneous VTI medium with ε = 0.110, δ =−0.035 and
velocities Vp = 3368 m/s and Vs = 1829 m/s. The red dashed
line represents the best fitting using equation (11).

The group velocity (ray velocity) for P- and SV- waves in
TI media has the direction dependence as presented in
Tsvankin (2001). As a consequence, the group velocity
Vg can be written in terms of phase velocity V , taking into
account the direction correction as

Vg(θ) =V

√
1+

(
1
V

dV
dθ

)2
, (12)

where θ represents the phase direction angle. Also,
one way to track the symmetry axis is to evaluate those
directions where Vg = V . For such cases, if φ represents

the angle with the vertical representing the symmetry
orientation, then the derivative of phase velocity, when
applied to θ = φ is zero. For the specific case of VTI
media, the equation (12) is still valid regarding the vertical
symmetry axis, which implies φ = 0. Meanwhile, for that
same media, by Coimbra et al. (2023), the TM velocity can
be written in terms of θ as

VTM(θ) =V

√
1+

1
V

d2V
dθ 2 . (13)

Therefore, it is clear the influence direction of the
media, in anisotropic cases, on the wave propagation
has implications on the obtained datasets for purposes of
seismic processing, but it is important to note that, unlike
the isotropic medium, we cannot associate the TM velocity
with the group velocity despite these changes concerning
the phase angle. Next section, we examine examples that
provide clues to determine some signature on seismic data
to get the information of pure heterogeneity or the possible
existence of anisotropy contributions.

Diffraction Cluster - with vertical heterogeneity

Until now, we considered a straightforward diffraction
response, which provides an indication of the TM velocity
variation and anisotropic influence on the wavefront
path. However, a single diffraction response cannot
take relevant information about the phenomenon, being
necessary to consider more diffraction responses. For
that, we considered a cluster of diffraction responses
near the target region to achieve suitable redundancy
of information. Figure 3 shows their distribution and
specifies the velocity model. The diffraction traveltime
approximation, equation 1, is applied to recover all these
diffractions from the dataset, obtaining an individual TM
velocity related to each extracted diffraction response.
Here, we use the global optimizer differential evolution (DE)
for the traveltime fitness (Storn and Price, 1997). After this,
an average TM velocity is created.

Figure 4 shows the TM velocity average represented by the
solid blue line. Here, it is possible to see a pattern of strong
high-velocity variation and the individual diffraction case.
Besides, when we apply the equation (11) to this average
velocity curve, we obtain ξE = 0.4525, which represents an
approximation for the anisotropic deviation of the medium
where the exact anisotropy has ξ = 0.4180. Also, such
a cluster can be used in the isotropic case, illustrated by
Figure 5 where verifying a small average velocity variation
is possible. It was obtained ξE = 0.007, where ξ = 0
is the correct, emphasizing the probable prevalence of
heterogeneity since the velocity is not constant. For the
example with velocity vp = 3368+ 0.7z m/s and vS = 1829
m/s where ε = 0.110 and δ =−0.035 the result is illustrated
in Figure 6. The extracted parameter was ξE = 0.1510
in contra-position to exact one ξ = 0.1450 resulting in the
absolute error |EA| = 0.006. The case ε < δ with ε = 0.110
and δ = 0.150, illustrated in Figure 7 where ξE = −0.0555
and the exact one is ξ = −0.04. From the concavity
orientation of the velocity, the diffraction signature can be
used to set if ε is greater than δ and vice versa.

Diffraction Cluster - with lateral heterogeneity

Let us move on to the case with lateral heterogeneity
where the velocity is described by Vp(x,z) as illustrated
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Figure 3: Cluster of diffractions varying in depth and
lateral position in a heterogeneous medium with velocities
Vp = 3292+ 0.7z m/s and Vs = 1768 m/s. A similar cluster
configuration was used for other velocities.

-3 -2 -1 0 1 2 3

Slope [s/m] 10
-4

3000

3200

3400

3600

3800

V
e
lo

c
it
y
 [
m

/s
]

Figure 4: Average TM velocity response (blue line) of a
diffraction cluster embedded in the VTI medium with ε =
0.195, δ = −0.220 and velocity described in Figure 3. The
red dashed line represents the best fitting using equation
(11).
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Figure 5: Average TM velocity (blue line) in the
heterogeneous medium with velocity described in 3. The
red dashed line represents the best fitting using equation
(11).

in Figure 8. As before, Figure 9 shows the TM velocity
response represented by the solid blue line. The red
dashed line is the best fit obtained using equation (11),
presenting a pour performance. To consider such cases, it
is necessary to modify that equation to consider the lateral
heterogeneity. We propose a correction for considering
lateral heterogeneity in the form

VTM(A) =
VNMO(0)(1+αA)√

1+2yξ F(A)+ yξ 2F(A)2
[1+ξ F(A)] , (14)
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Figure 6: Average TM velocity response of a diffraction
cluster (blue line) embedded in the VTI medium with ε =
0.110, δ = −0.035 with velocity vp = 3368 + 0.7z m/s and
vs = 1829 m/s. The cluster is the same described in Figure
3. The red dashed line represents the best fitting using
equation (11).
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Figure 7: Average TM velocity response of a diffraction
cluster (blue line) embedded in the VTI medium with ε =
0.110, δ = 0.150 with velocity vp = 3368 + 0.7z m/s and
vs = 1768 m/s. The cluster is the same described in Figure
3. The red dashed line represents the best fitting using
equation (11).

where F(A) preserves its defined structure, see
equation (10), and

y =
A2

C0
(1+αA)2 . (15)

The parameter α has the dimension of velocity (m/s)
here named lateral velocity factor. Considering this
correction, Figure 10 shows the performance of fitting
where the extracted parameter was ξE = −0.03 and the
lateral velocity factor is α = 453 (m/s). Applying this
equation to other examples makes clear the correction’s
effectiveness. Figure 11 illustrates other example where
the fitting parameter obtained is ξE = 0.1745 and α = 528
(m/s). In this case, we can see a good fit performance.
Figure 12 shows the performance of our approach when
considering a strong anisotropy where ξE = 0.4980 and
α = 500 (m/s). The last example shows the performance for
the pure heterogeneous case where the parameter ξ = 0.
The signature for this case is well illustrated in Figure 13,
and for this case, ξE = 0.002 and α = 412 (m/s).

Discussion

We start the discussion by considering the relationship
between heterogeneity and velocity spreading in contra-
position to anisotropic influence. Cameron et al. (2007)
presented a well-established relation between migration
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Figure 8: Cluster of diffractions varying in depth and lateral
position in a heterogeneous medium with velocities Vp =
3368+0.5x+0.7z m/s and Vs = 1829 m/s.
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Figure 9: Average TM velocity response (blue line) of a
diffraction cluster embedded in the VTI medium with ε =
0.110, δ = 0.150 with velocity vp = 3368+0.5x+0.7z m/s and
vs = 1768 m/s. The cluster is the same described in Figure
8. The red dashed line represents the best fitting using
equation (11), which does not follow the velocity signature.
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Figure 10: Average TM velocity response of a diffraction
cluster (blue line) embedded in the VTI medium with ε =
0.110, δ = 0.150 with velocity vp = 3368 + 0.5x + 0.7z m/s
and vs = 1768 m/s. The cluster is the same described in
Figure 8. The red dashed line represents the best fitting
using equation (14).

velocity and wave propagation velocity (Dix velocity) for
stratified isotropic media. In that work, they have shown
that

VDix =
Vg

|Q|
, (16)

where |Q| represents the geometric spreading of wavefront
if we consider a line source on measurement surface and
telescopic ray, taking into account that, for stratified media
with no lateral velocity variation, we have |Q| = 1, then
the conclusion is VDix = Vg. However, for complex media,
the spreading factor |Q| ≠ 1, the relation makes clear the
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Figure 11: Average TM velocity response of a diffraction
cluster (blue line) embedded in the VTI medium with ε =
0.110, δ = −0.035 with velocity vp = 3368+ 0.5x+ 0.7z m/s
and vs = 1829 m/s. The cluster is the same described in
Figure 8. The red dashed line represents the best fitting
using equation (14).
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Figure 12: Average TM velocity response of a diffraction
cluster (blue line) embedded in the VTI medium with ε =
0.195, δ = −0.220 with velocity vp = 3292+ 0.5x+ 0.7z m/s
and vs = 1768 m/s. The cluster is the same described in
Figure 8. The red dashed line represents the best fitting
using equation (14).
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Figure 13: Average TM velocity response of a diffraction
cluster (blue line) embedded in the heterogeneous medium
with velocity vp = 3368 + 0.5x + 0.7z m/s and vs = 1829
m/s.The red dashed line represents the best fitting using
equation (14).

impossibility of an exact correspondence between the Dix
velocity and the real group velocity, which implies an error
when one performs the inversion procedure for such cases
of heterogeneous isotropic media. However, for anisotropic
general media, Coimbra et al. (2023) have shown that

VDix =
V
|Q|

√
1+

1
V

d2V
dθ 2 . (17)
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The influence of anisotropy will be noticed even in the
symmetry axis in the VTI medium. Consequently, the
Dix and Group velocity differs even in homogeneous and
vertical heterogeneous media, where |Q|= 1, according to
the analysis of Thomsen (1986). How to determine |Q|
for practical examples is unclear. In our approach, the
proposed diffraction cluster may indicate possible velocity
distortions during the inversion procedure.

The introduction of this additional parameter, named lateral
velocity factor, α combined with the anisotropy signature
ξE , can help in corrections during the inversion task. Note
that equation (14) can be used in both cases since α is
estimated null for Vp(z) allowing us to obtain a general
framework based on this approach. On the other side,
for the almost elliptic (ε ≈ δ ) case, there is a bottleneck to
the procedure, which is to differentiate pure heterogeneity
from anisotropy. The signature must be carefully examined
for those cases to find curvatures that will happen only
in the VTI case –comparing the figures 10 and 13, it is
clear the difference. The fitting curve is a straight line
for the pure heterogeneous case, while there is a small
curvature for the VTI case. Therefore, the proposed
approach is a tool to help to figure out distortions during the
inversion. An additional procedure to estimate the group
velocity from the diffraction is necessary to determine the
anisotropy parameters. Coimbra et al. (2023) have shown
how to do this for complex anisotropic media using an
Eikonal-type equation of the wave-equation time migration
for the generalized case. Accordingly, in that work, the
authors generalize the result proposed by Fomel and Kaur
(2021). That technique can be combined with the proposed
approach to characterize the anisotropy of the medium
entirely.

Conclusions

Diffraction signatures are of great interest for velocity model
building which is essential to depth conversion procedures.
In this work, an additional feature about diffraction events
is presented. Using the TM velocity, it is possible to track
variations of the medium velocity concerning direction,
which characterizes anisotropy. Such a procedure can
be done directly from any diffraction dataset. Besides,
the numerical experiments for vertical heterogeneity (even
thin vertical layers) show that the TM velocity variation
presents a distinct signature compared to heterogeneous
VTI media. Even more, a TM-velocity approximation
is proposed considering the most challenging case of
lateral heterogeneity. The result is a framework that
can be used to track signatures of anisotropy in the
medium and pronounced lateral velocity originated by
pure heterogeneity. Further investigations may suggest
introducing an additional step in seismic data processing
to explore such features. Finally, in ongoing work, we will
study if this pattern has the same behavior for TTI and HTI
media and anisotropies with fewer symmetries.
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