
Automatic Segmentation of Breakouts in Acoustic Image Logs with Deep Learning
Gabrielle Brandemburg dos Anjos1, Augusto Ícaro da Cunha1, Mayara Gomes1, Nelia Reis1, Raquel Guilhon1, Renata
Nascimento1 and Candida Menezes de Jesus2, 1Tecgraf Institute - PUC-Rio, 2Petrobras

Copyright 2023, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation during the 18th International Congress of the
Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 16-19 October 2023.

Contents of this paper were reviewed by the Technical Committee of the 18th

International Congress of the Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction or
storage of any part of this paper for commercial purposes without the written consent
of the Brazilian Geophysical Society is prohibited.

Abstract

Identifying breakout failures is fundamental for estimating
the borehole’s stability and obtaining the direction and
magnitude of the maximum horizontal stress in the rock
formation. Traditionally, interpreters identify and
characterize these collapsed zones manually in acoustic
image logs, which can be a very time-consuming and
labor-intensive task. Other aspects that make
interpretation difficult are the presence of several noisy
artifacts and ambiguous pore structures in the image
data. With the arrival of deep learning techniques,
solutions based on neural networks have become
increasingly promising for complex tasks related to object
detection and segmentation in images. This work
describes a methodology for the segmentation of
breakout regions using a convolutional neural network
called DC-UNet, and pre and post-processing techniques
applied to enhance the quality of the labels. The model
achieved an average F-Score of 72.3% and satisfactory
qualitative results obtained from a database of 33
acoustic amplitude image logs.

Introduction

In the O&G industry, the analysis of geomechanical
stresses is a significant step in reservoir modeling. Drilling
a borehole can change the in-situ stress of a rock
formation and may yield damages or failures in the
wellbore. The compressive failures are collapsed zones
on the borehole’s wall called breakouts. These structures
appear on both sides of the well and are 90 degrees
azimuth away from the maximum horizontal stress axis.
Because of that, their analysis and comprehension are
used for building logs of stress orientation and magnitude
along the well trajectory (Zoback, 2007).

The acoustic borehole image log is currently the most
relevant data for visualizing breakout artifacts. The
logging tool emits a sonic pulse to the wall rock and
registers the amplitude and transit time of the reflected
wave. In these logs, breakouts appear in pairs of vertical
and irregular cavities separated by 180 degrees.
Interpreting these structures takes a lot of time and effort,

primarily because of log data's massive size and
complexity.

Only a few works have been published to detect
breakouts automatically. In deep learning, Dias et al.
(2020) proposed training a fast-RCNN architecture with
synthetic data to detect these features in image logs. The
method reports 90% of AUC for synthetic data; however,
there's no mention of the model's performance in
distinguishing breakouts from other structures in real
data. Besides that, the proposed technique only provides
the bounding box and not the segmentation of the regions
of interest. Another approach suggested by Valentín
(2018) is the use of image processing techniques for
breakout segmentation in transit time logs. The author
profits that breakout areas display a high rate of noise
and heterogeneity in the transit time log in order to use a
3x3 standard deviation filter to highlight these regions.
The result is then binarized and post-processed with a
dilation operation. The foreground candidates are tested
to check if they satisfy the geometric and morphological
properties of breakouts. The author doesn't mention if this
final evaluation is done manually or with any automatic
strategy.

In this paper, we propose the supervised training of a
convolutional neural network architecture for a
pixel-by-pixel classification of breakout areas combined
with image processing techniques to enhance the quality
of the ground truth and output labels. The database used
for training, validation, and testing is composed of 33
acoustic amplitude image logs and their respective
ground truth labels.

Method

The methodology developed can be divided into three
stages. The first stage of the workflow regards data
treatment before feeding the network. The second part
deals with the supervised training of the neural network
model using the amplitude image log and ground truth
mask. The trained model is then used to predict breakout
regions from amplitude image logs unknown by the
network. The third stage consists of a post-processing
step to enhance the predicted regions.

Pre-processing and sampling

The available ground truth labels were generated using a
combination of histogram segmentation and manual
adjustments made by interpreters, described in Menezes
et al. (2016). This method of labeling is very sensitive to
noise, therefore the generated foreground regions are
inaccurate and disjointed. To attenuate this problem, a
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filter was applied to the binary ground truth mask in order
to remove all foreground regions with an area smaller
than 10 pixels. After that, a dilation morphological
operation is applied to expand the boundaries and better
delimit the breakout areas, which also helps to join small
fragmented regions that should be a single connected
component. The result of this processing is illustrated in
Figure 1.

Figure 1 - Sample of the annotation mask before (left)
and after (right) pre-processing technique. Breakout
labels correspond to the green regions.

In order to send the data as input to the CNN model, it is
necessary to sample the log data in small squared
patches.

A sliding window technique adapted to the cylindrical
domain of a wellbore was used to extract these patches.
The method is detailed in Anjos et al. (2022, 2023).
Besides breakouts, the provided database also contained
fractures and vugs annotations. This information was
used to discard all the patches which had no examples of
breakouts, vugs, or fractures in order to reduce the
sparseness of the data.

Model Architecture

Figure 2 - Architecture of DC-UNet.

The chosen model for segmenting the breakout regions
from amplitude image samples is the DC-UNet (Lou et
al., 2020). This architecture is a variation from the
classical U-Net introduced by Ronneberger et al. (2015).
Both models were originally proposed for the
segmentation of medical images that requires a high level
of detail in boundary regions, which is also essential
when segmenting cavities in borehole image data.
DC-UNet follows the same U-shape structure as its
predecessor, with the left side being the encoder stage
that extracts features from the image through a
succession of convolution operations, and the right side is
the decoder that uses transpose convolutions to
upsample the features back to the original input shape, as
shown in Figure 2.

Convolution blocks of DC-UNet are called Dual Channel
Block (DC-Block), and their main purpose is to extract
features in multiple scales. The encoder and decoder are
connected by concatenating the output of each encoding
DC-Block with the input of the decoding DC-Block on the
same level in order to combine features of high resolution
with low ones, producing a sharper result.

Training the neural network model involves minimizing a
loss function that measures the error between the binary
output mask from the network and the ground truth
annotated mask. The loss function we used was the
binary cross-entropy and is defined as follows:

𝑐𝑟𝑜𝑠𝑠(𝑦,  𝑦') =  Σ − (𝑦 𝑙𝑜𝑔(𝑦' ) + (1 − 𝑦) 𝑙𝑜𝑔(1 − 𝑦'))

where is the pixel value predicted by the trained model,𝑦
and is the actual value of the pixel in the ground truth𝑦' 
mask.

Post-processing

In our experiments, some predictions resulting from the
trained model were fragmented or thinner than expected.
To overcome this issue, a post-processing step was
included to increase the quality of the results.

The proposed technique consists of a modified version of
the image processing amplitude aware region growing
algorithm, flood fill (Vadevenne, 2004). The flood fill
algorithm is a classical image segmentation method that
applies a global predicate to measure similarity over the
input image. Starting from a seed and based on this
predicate, the algorithm could continue or stop the region
from growing. The procedure consists in define globally
an upper and lower threshold values respectively,𝑡

𝑎
,  𝑡

𝑏
and if a pixel lies inside the interval it is labeled as(𝑡

𝑎
,  𝑡

𝑏
)

belonging to the segmented region. Otherwise, the pixel
is labeled as background.

A traditional value to evaluate is the pixel intensity, so, if
the pixel intensity , the pixel belongs to the𝑝 ∈ (𝑡

𝑎
,  𝑡

𝑏
)

segmented region, otherwise, it belongs to the
background. Another strategy is to assign a statistical
value, like image variance, as a threshold.
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The success of this segmentation strategy strongly
depends on the correct threshold interval, which must be
known a priori. However, finding these limits could be a
hard task, particularly for data from acquisitions, like
borehole image logs, where the signal can be disturbed
by noise. Another issue is that the noise influence along
the borehole image logs could vary, so it may be not
possible to define a global value to evaluate all pixels.

Proposed strategy

To enhance the automatic segmented structures, the
proposed strategy relies on following a local approach
instead of a global one. For each detected structure, the
initial prediction is taken as a mask. The segmentation
mean in terms of intensity value is then computed and the
pixel within the labeled ones with the intensity closest to
the segmentation mean is taken as seed.

In order to minimize interference from other structures,
the image area is reduced to the Region of Interest (ROI).
From the initial prediction, a bounding box is extracted as
an initial ROI estimation for all predicted structures bigger
than 10 pixels. Sequentially, the bounding box is enlarged
by 20 pixels at each side, resulting in the final ROI as
shown in Figure 3. Once all ROIs are extracted, they are
mapped to the image log as a mask to restrict the flood fill
propagation.

Figure 3 - ROI acquisition. From left to right: Structures
predicted by the trained model, small structures filtering,
bounding box extraction, bounding box enlargement.

The following step is to perform a 4-connected flood fill in
the amplitude image log. To prepare the data, a Gaussian
Blur with a 3x3 kernel size is applied to attenuate the
structure's boundary noise. The Otsu’s (Otsu, 1979)
method is applied in the sequence to binarize the image
and then the Canny edge detection (Canny, 1986) is
performed to extract the structure’s contour. If the
resulting contours have gaps, a neighborhood
connectivity strategy is applied to connect the extreme
points. This pipeline can be seen in Figure 4.

Figure 4 - Structure contours extraction. From left to
right: Structure in amplitude image well log, contours
extraction, extreme points detection, connected contours.

Once the contour is fully connected, the flood fill is
performed starting from the selected seed. In this
proposed approach, a pixel belongs to the final𝑝
structure if:𝑆

 𝑀 − 𝑚 * σ <   𝐼(𝑝) <  𝑀 + 𝑚 * σ ,

where is the intensity of the pixel , is the 𝐼(𝑝)  𝑝 𝑀
prediction mean, is the standard deviation and is aσ 𝑚
confidence value set as 2.5 for all experiments.

To guarantee the propagation never crosses the structure
contour, all pixel’s intensity value within the contour was
set to max_float. Figure 5 illustrates the post-processing
overview for a single structure.

Figure 5 - Post-processing overview. From top left:
Structure predicted by the trained model, ROI acquisition,
structure selection in amplitude image well log, contour
extraction, contour as flood fill constraint, final structure
segmentation.

It should be noted that the Otsu algorithm may not be
able to always produce the desired binary image version
especially when there is a lower contrast variation
between the structure and the background. However, in
the performed experiments, if the Otsu is applied to small
ROIs the results were satisfactory in 99% of the cases.

Results and Discussion

For the quantitative evaluation of the model we used four
conventional metrics for classification problems: Recall,
Precision, F1-Score, and IoU. In probabilistic terms,
Recall is the probability of the model classifying a pixel
sample as a breakout given that it is, in fact, a breakout.
Precision measures the probability of the output
prediction of a pixel sample being correct given that it was
classified as a breakout by the model (Goutte et al.,
2005). F1-Score is the harmonic mean between Recall
and Precision. IoU (Intersection over Union) is the
overlapped area of ground truth and predicted mask,
divided by the union of these areas.
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K-Fold cross-validation is a well-known technique for
evaluating a classification model's generalization
capacity. It consists of partitioning the dataset into
mutually exclusive k subsets, called folds, and running
the model k times, using a different subset for training
each time.

For our purpose, we created three folds of train,
validation, and test, using data from 33 wellbores,
described in the table below:

Partition Fold 1 Fold 2 Fold 3

Test 6 wells
(20.9%)

4 wells
(21.2%)

7 wells
(18.2%)

Validation 7 wells
(20.0%%)

7 wells
(19.9%)

4 wells
(21.3%)

Training 20 wells
(59.1%%)

22 wells
(58.9%)

22 wells
(60.5%)

Table 1 - Dataset fold description. The number of wells
used in each partition and the percentual value of total
data volume.

The scores obtained for each evaluated fold and the total
score average are shown in Table 2.

The model achieved a good overall performance, with a
72.3% of F1-Score of average. Precision and Recall are
well-balanced for Fold 1 and Fold 3, while Fold 2 has the
highest Precision and lowest Recall score, caused by the
rise of false negatives predictions. Fold 2 has also the
biggest test and smaller training set, which correlates with
the metrics results. Since the test dataset also contained
input images of fractures and vug pores, the results show
that the model has a satisfactory capability to distinguish
breakouts from other pore structures.

Metrics Fold 1 Fold 2 Fold 3 Avg

Precision 75.75% 82.0% 79.6% 79.1%

Recall 70.97% 54.9% 76.0% 67.3%

F1-Score 73.28% 65.8% 77.8% 72.3%

IoU 57.83% 49.0% 63.6% 56.8%

Table 2 - DC-UNet scores for each evaluated fold and
average.

Some results are shown in Figures 6 and 7 below. Figure
6 shows an example of a successful segmentation of a
well-behaved breakout section in an amplitude log. In this
result, the predicted structures were very similar to the
ground truth. Figure 7 illustrates a section where the
model was not able to predict the breakout in the upper
region with high levels of noise. However, the breakout in
the cleaner zone was successfully predicted, even though
it has a less conventional and non-elongated shape.

Figure 6 - Example of highly accurate segmentation of a
breakout. From left to right: Amplitude image input;
ground truth; the output of the proposed method.

Figure 7 - Example of mid-accurate segmentation of a
breakout in a noisy region. From left to right: Amplitude
image input; ground truth; the output of the proposed
method. Labels in red are related to vug pores.

Conclusions

This work presented a method for the automatic
segmentation of breakout areas in acoustic borehole
image logs. The methodology consists of supervised
training of a convolutional neural network called
DC-UNet, followed by a post-processing treatment on the
model's prediction output using a flood fill-based
technique contained within ROIs.
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To validate and evaluate the method we used a dataset of
33 amplitude image logs and their ground truth masks,
containing breakout, fractures and vugs examples. The
metrics used for quantitative evaluation were Precision,
Recall, F1-Score and IoU. The model achieved
satisfactory results with an average F1-Score of 72.3%
and IoU of 56.8%, and qualitative results that
corroborated with the numerical ones.

For future works, we suggest the exploration of different
approaches for extracting the patches from the well log,
using random cropping for the cylindrical domain. It is
also interesting to study how to introduce the transit time
log data as a second input channel of the neural network.
Another addition would be the use of data augmentation
techniques to enrich the dataset, as it seems that the
metrics are highly affected by the number of available
data for training. The main challenge of the discussed
problem is the scarce amount of annotated data, so it is
strongly suggested the exploration of unsupervised or
semi supervised based solutions.
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