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Abstract

The problem related to the mapping of geological
structures, such as faults, based on seismic data analysis
is a matter of great interest and deserves attention since
such structures can be related to oil and gas accumulation
and, therefore, their exploration is of great economic
interest. Thus, it is expected to encourage the development
of new technologies that help in this task, with the goal
of increasing the precision and speed of that process.
Artificial Neural Networks (ANNs) are machine learning
algorithms that propose to mimic the nervous system
of living beings. More specifically, Multilayer Perceptron
Neural Networks (MLP) were designed to behave similarly
to the human retina, with the aim of recognizing geometric
patterns (da Silva, 2016). Once we deal with a problem
that can be treated as an image classification, we can
assume that the development of such a network is suitable.
In this sense, the current work proposed a methodology
to detect seismic faults using an MLP. Every model of
machine learning requires training and validation steps.
So, for the work to be developed, it was necessary to
build a database containing samples of seismic amplitude
and coherence seismic attribute data from the public 3D
seismic F3 Block dataset located at the North Sea, with its
respective classifications. When it comes to a prediction
problem, one of the main purposes is to increase the
generalizability of the model so that it fits unknown data
(from a different location, for example). Finally, after the
training and testing, it was possible to observe acceptable
results of predicted faults in both known and unknown data,
indicating the developed model’s helpful effectiveness.

Introduction

The drilling process for direct exploration of oil and gas is
expensive, and it needs geological and physical data from
the subsurface to be more accurate. Therefore, several
indirect and cheaper studies of the physical properties of
the subsurface are carried out before drilling. This mapping
of subsurface properties contributes to understanding the
regional geology, increasing the efficiency of an exploration
process, improving accuracy, and reducing costs.

The seismic reflection method is one of the leading
geophysical methods used in the oil industry. It consists
of monitoring the time and amplitude with which acoustic
waves artificially generated on the surface penetrate the
soil, reflects on geological interfaces, and return to the

surface where geophones record them. Afterward the data
acquisition, some calculations are performed to process
them so they can be better visualized. Finally, the
filtered and processed seismic sections allow interpreters
to understand the sedimentary basin’s history and identify
some essential geological structures for the context of oil
and gas exploration.

The fault can be mentioned as one of the main structures
in oil and gas exploration, and it is a geological formation
that represents lithological discontinuity; in other words, it
is a rupture in the rock followed by displacement and is
generally caused by tectonic movements. These structures
favor the movement of fluids between the rocks. Hence,
their mapping can indicate zones of interest where the oil,
for example, can be trapped. The task of mapping these
structures is arduous and requires a significant amount
of time since current datasets are enormous, and can
reach scales of hundreds of gigabytes. Deep learning
techniques can help identify these structures by learning
from past knowledge. Numerous applications exist in
language and image recognition, advertisements, financial
fraud, medicine, etc. In geophysics, we can mention
the application carried Santos (2021) that developed a
neural network Multilayer Perceptron to estimate zero-
phase wavelets from synthetic seismic data. Another
successful implementation of artificial intelligence was in
interpreting seismic data to detect seismic facies and faults
(Wrona et al., 2018; Zheng et al., 2019).

This abstract aims to demonstrate how deep learning
techniques can be helpful in fault detection and is divided
into three sections: Methods (describes the techniques that
were used and the workflow), Results (presents the results
of the algorithm application in real data), and Conclusions
(which brings an interpretation about the work and results
carried out).

Theory

Identifying discontinuous seismic facies (faults) is a
complex and highly nonlinear task, making it difficult to
use machine learning algorithms based on just a few
parameters. Therefore, deep neural networks could be
feasible algorithms to automate this process.

Multilayer Perceptron Neural Network

The neural networks can differ from each other by the
number of hidden layers, neurons, and interconnections.
These settings are called the architecture of a network.
The model used in this research was the Multilayer
Perceptron (MLP) because this architecture can have one
or more hidden layers, in which can be employed activation
functions to let the model deal with nonlinear problems.
Figure 1 shows an example of a fully connected MLP. For
any artificial neural network to be trained, it must follow
the feedforward and backpropagation processes so that

Eighteenth International Congress of the Brazilian Geophysical Society



SEISMIC FAULT CLASSIFICATION USING A MULTI-LAYER PERCEPTRON NEURAL NETWORK 2

its weights can be updated. The following subsections will
brief explain the feedforward and the backward process.

Figure 1: Multilayer Perceptron neural network architecture
diagram.

Feedforward

The feedforward process contains the steps in which
the input values of a single sample pass through the
neural network from the input to the output layer in order
to calculate the error associated with each of the input
variables and their weights.

First, each neuron receives a certain input vector, applies
an activation potential u, then an activation function g is
applied to that potential, and finally, an error L is calculated
to measure some difference between the predicted output
and the correct one in such a way that the weights can
be updated later on the backpropagation process. The
general equations of the activation potencial, activation
funcion and the cost function (error) is showed below:

u(w) = w0 +
n

∑
i=1

xi ·wi (1)

g(u(w)) = g(w0 +
n

∑
i=1

xi ·wi) (2)

L(g(u(w))) = L(g(w0 +
n

∑
i=1

xi ·wi)) (3)

where w = [w0, w1, ..., wn] is the weight vector, n is the size
of the layer before that neuron, xi is a element of the input
vector and g and L are arbitrary functions.

For the first neural layer case, the input vector is the model
input x = [x1, x2, ..., xn], but for any layer after the input
vector is the output of the previous layer.

Backpropagation

Most Machine Learning algorithms aim to minimize some
loss function, and in order to achieve this task in deep
learning models, the cost functions must be known and
their derivatives. That is a crucial rule because the
parameter optimization of the ANNs is based on a Gradient
Descent (GD) algorithm, which consists of updating the
parameters through a bunch of iterations by taking the
partial derivatives of the loss function L concerning the
weights w. In order to accomplish it, the GD method is
expressed by the chain rule as shown below in Equation 4.

∂L
∂wi

=
∂L

∂gm
· ∂gm

∂gm−1
...

∂gi+2

∂gi+1
· ∂gi+1

∂wi
(4)

The initialization of the parameters is usually random and
between [-1, 1], and they are updated interactively through
the following equation (Eq.5):

wt+1 = wt −α · ∂L
∂wt

(5)

where α is the learning rate.

Workflow

This research was implemented in Python 3 language, and
we used the numpy, pandas, matplotlib, and Keras package
to manipulate, visualize the dataset and train the MLP.
Figure 2 demonstrate the workflow employed in this work.

Figure 2: Research workflow.

Dataset

The first step of this research was to create the dataset
containing the input and output values so we could
train, test and validate the neural network model. The
dataset was basically a matrix in which each row was
a training/testing/validating sample, and each column
represented a variable. The first step in building the dataset
consisted of creating the columns corresponding to the
input variables. Each input sample was represented by
a vector with amplitude, and coherence values. In order,
the seismic sections went through part of the process to
create the MLP input vectors illustrated in Figure 3 so the
vectors could contain information of a squared area of the
two sections. For each of the four chosen lines (two inlines
and two crosslines), this step was performed in such a
way that the extracted red windows shown in Figure 3 slid
through all the seismic sections, and the vectors were then
concatenated as shown in Figure 4.
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Figure 3: MLP prediction diagram.

Figure 4: Input matrix building diagram.

As explained before, it was necessary to map some
faults manually to obtain the known output values. The
geophysicist and Ph.D. student in Geophysics at UFBA,
Vinı́cius Carneiro, carried out this charge. As mentioned
before, four lines of the F3 Block seismic cube were
chosen. The lines used on this research to test and train
the model was selected from different locations of the
seismic cube:

• Inlines: 310 and 640; and

• Crosslines: 890 and 940.

As a result, we obtained the positions corresponding to
the faults in four seismic sections. Then it was possible
to draw lines, segment the faults and create sections only
with these drawings with the help of the Python computer
vision library OpenCV, as illustrated in Figure 5.

Figure 5: Mask sections building diagram.

Once we had the mask sections corresponding to the
known segmented faults, we had to obtain a single vector
with binary categorical values corresponding to every area
of those sections, and a similar process shown in Figure 5
was performed to create the labels of the dataset. As we

considered it a classification problem, not a segmentation,
we associate each entire polygon with only one label, and
these cropped sections must fulfill two requirements to be
labeled as a fault:

1. The segmentation trace drawn must cross the center
of the image; and

2. A minimum amount of pixels must be denoted as a
fault in the image.

If these requirements are satisfied, a categorical value
equal to 1 is used to indicate the presence of a fault at
that selected zone, as can be displayed in Figure 6.

Figure 6: Target vector building diagram.

The width and length of the extracted windows (cropped
section) are very important variables. If the window is too
large, there may be several faults in different image regions,
and it cannot be represented by a single central pixel. On
the other hand, if the value is too low, the faults may be
exaggeratedly enlarged, and their recognition would be
harmed. Therefore, we tested several parameters, and the
size of the windows extracted from the sections was 23x23.
That is 529 samples of each attribute and 1058 samples in
total.

Another criterion to be defined is the minimum number
of samples belonging to the target class in the image
extracted from the mask so that it can be classified as a
fault or not. The thickness of the drawn mask was only
one pixel, so the maximum possible number of detected
pixels would be 23. Since the known faults were manually
mapped, the ends of the discontinuities were not highly
accurate. Therefore, it was seen that when that minimum
number was very low, the discontinuity was often no longer
at the associated coordinate. Thus, it was decided that the
optimal number was 20 pixels, classified as a fault in the
image. That is, the fault should cross the image almost
completely.

Considering the established criteria, a dataset was
obtained at the end of all the processes described above,
as shown in Figure 7. It is possible to note in Figure
7 that the number of windows extracted from 4 lines
was 1,349,228, each with 1,058 samples, and the output
vectors, which are desirable to be predicted, have only 1
sample.
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Figure 7: Dataset where ampi are the amplitude samples,
simi are the similarity samples, and class is the true output
with the categorical values (fault: 1; non-fault: 0).

Network Training

The Multilayer Perceptron neural network implemented has
five layers: one for the input vector, three hidden layers,
and the output one. The first layer (input layer) has
1,058 samples (529 samples of amplitude and 529 of
coherence), and the second, third, fourth (hidden layers),
and last (output layer) with 1,058, 529, 264, and 2 neurons,
respectively, as illustrated on Figure 8. The two neurons at
the last layer are the probabilities of the samples belonging
to the fault and non-fault classes. Totaling, then, 2,941,505
parameters to be optimized.

Figure 8: Trained Multilayer Perceptron neural network
architecture.

With the architecture set, other parameters also should be
configured:

• Activation function: hyperbolic tangent (limits the
output value into the interval [-1, 1])

g(u) =
1− e−β ·u

1+ e−β ·u (6)

where β is associated with the slope of the curve
at its inflection point and u is the activation potential
(Equation 1);

• Cost function (which is desired to be minimized):
categorical cross entropy

CCE =−
n

∑
i=1

yi · log(y′i) (7)

where n is the number of samples, y is the known
target value, and y′ is the target value predicted by
the model;

• Learning rate: is represented by the α controls
the speed at which the parameters are optimized
according to the cost function. If α is too large,
the optimization can lead to non-convergence, and
if it is very small, the optimization can lead to local
convergence without reaching the global minimum. In
this research, the value chosen for the training was
0.0005, and the optimizer was the Adaptive Moment
Estimation (Adam); and

• Number of epochs: represents the number of times
the data set will be used as input to the network.
Again, the wrong choice of this number can lead to
future problems. Once a very low number is chosen,
the network may not be able to reach the solution in
time. A very large number can determine an overfit.
I.e. the network fits very well to the training data, but
it is not able to generalize for different samples.

Results

The Holdout cross-validation method was used to verify
the quality of the Multilayer Perceptron network developed.
That is, the data set was split into a training subset and
a test subset, and these were randomly rearranged. For
this work, it was decided that 80% of the database would
be used for training and the remainder (20%) for testing.
From the execution of the model, it was possible to verify
an accuracy of 97.69% and 91.73% when applied to the
training and test subsets, respectively. However, beyond
accuracy, it is common to use other metrics to validate
classification models, such as precision, recall, and f1-
score (Equations 8,9 and 10).

Precision =
T P

T P+FP
(8)

Recall =
T P

T P+FN
(9)

F1 Score =
2 · precision · recall
precision+ recall

(10)

Where T P means ”true positive” (amount of samples that
were correctly predicted as the target class), FP means
”false positive” (amount of samples that were classified as
the target class but did not belong to it), and FN means
false negative” (amount of samples that were not classified
as the target class but belonged to it). Therefore, analyzing
the widely used metric F1 Score, a value of 91% was
obtained.

To check the generalization capacity of the network, a
seismic section which was not selected for the training
step but also from the F3 Block was selected to be used
as a blind test. As a result, it is possible to visualize the
probability of a given sample to be or not a fault in Figure 9.
Notably, the ANN enhanced the regions with seismic fault
occurrences, such as the main fault, the faults associated
with the carbonate platform, and chaotic seismic facies
located between 280 and 350 pixel rows.
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Figure 9: a) amplitude seismic section with faults
highlighted by red elipses. b) probability map - result of
the model applied to the section a).

Conclusions

The Multilayer Perceptron Neural Network trained in this
work showed the capability to enhance regions in the
seismic section with seismic fault occurrence without a
high resolution in its delimitation. The main and secondary
faults were pointed out as having a high probability of being
a fault according to Figure 9 (a), which is visually coherent
when compared with the regions with a low probability of
being a non-fault. Although the methodology needs to
be improved to identify faults more precisely, this method
can assist interpreters with some faults interpreted in their
dataset to have new insights into seismic interpretation.
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