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Abstract
Seismic interpretation is a process to identify the hydrocar-
bon occurrence in deep water reservoirs. Correlating the
structural and stratigraphic interpretation with well markers
in the depth domain is complex. This research presents a
workflow designed to perform precise seismic-well tie in
the depth domain. The proposed workflow uses evolution-
ary and machine learning algorithms in order to adjust a
velocity field. This process can be applied even without
the previous velocity field obtained from velocity analysis.
The proposed workflow allows not only a precise seismic
data positioning in the depth domain but also the estima-
tion of the velocity and impedance.

Introduction
A consistent representation of seismic data in depth helps
to reduce risks in exploration projects. The problem is that
the seismic-to-well tie procedure is conventionally done in
the time domain by a stretch-squeeze process applied to
the well logs, and depth conversion does not preserve well
ties. As a result, most of the interpretation work is re-
stricted to the two way travel time domain.

According to Etris et al. (2001), seismic interpretation in
the time domain for stratigraphic analysis is acceptable
since the interpretation remains the same despite struc-
tural changes. Otherwise, the structural interpretation in
the time domain is not recommended due to the ambigu-
ity of the real position and format of the geological struc-
tures. This ambiguity occurs due to the assumption of
constant velocities for the layers. To solve this ambiguity
and perform an accurate structural interpretation, apply-
ing a depth conversion process using a proper conversion
equation and a high-resolution velocity field is necessary.
Several equations available for Time-Depth conversion can
be applied according to the available velocity data and the
image ray concept (Filpo et al., 2016) is relevant due to the
good results even in areas with high-complexity geology
formations.

The primary process to build a high-resolution velocity field
is the Full Waveform Inversion (FWI). This process extracts
the velocity information from the full content of the seismic

trace (Virieux et al., 2014). However, despite the good re-
sults, this process requires pre-stack seismic data that can
not be available (as in the case of this present research).
In those cases, the velocity information can be obtained
by building a low-frequency model interpolating the veloc-
ity from well log data (Sams and Carter, 2017; Kumar and
Negi, 2012).

Sometimes, the position of interpreted seismic horizons do
not correlates with the well markers, what happens due to
geological complexity (Mancini, 2013; Viloria et al., 2009;
Gupta et al., 2013). Therefore, we developed a workflow
that minimizes the difference between the seismic hori-
zon and the well markers in the depth domain by updating
the velocity field generated by interpolating the well logs
along the interpreted horizons. The proposed workflow es-
timates precise seismic data in the depth domain without
the previous information about the velocity data from the
velocity analysis. The low-frequency velocity model ob-
tained in this process can be used to estimate the absolute
acoustic impedance.

Method
The present research was applied in the northwest area
of Tupi field in Santos Basin in Brazilian pre-salt Figure
1. The area represented in Figure 1 has 19 km2 and the
available data is composed of a post-stack 3D seismic vol-
ume and eight wells with the main log curves (gamma-ray,
resistivity, sonic, and density) and the Vertical Seismic Pro-
file (VSP) data. The general workflow is represented in
Figure 2, where we present the full process to obtain the
seismic data in the depth domain.

The workflow starts with the estimation of the relative acous-
tic impedance by applying the Colored Inversion (Lancaster
and Whitcombe, 2000) and adapted by Blouin and Gloaguen
(2017). The colored inversion is a robust process that en-
hances the seismic data, enabling a more robust interpre-
tation of the geological structures. The colored inversion is
fast, so it was choose to generate impedance to be used
as an input attribute to train the machine learning algorithm
and seismic horizon interpretation.

To build the low-frequency velocity field, we use the well log
information. Unfortunately, this log was registered only in
the reservoir depth interval (4800 to 5500 meters). Thus,
we apply a machine learning algorithm, Extremely Ran-
domized Trees (ExtraTrees), to estimate the velocities to
fill the well range. The ExtraTrees is a tree-based ensem-
ble method developed by Geurts et al. (2006). This algo-
rithm consists of a strongly randomized process to build
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Figure 1: Study area location and wells distribution.

Figure 2: General description of the proposed workflow.

the decision tree, where the structures are independent of
the output value of the learning sample. The randomized
process constructs a more robust algorithm reducing the
influence of noise, bias, and variance (Saeed et al., 2021).

Reference velocity information is required to estimate the
velocity log for the full range of the well using the Extra-
Trees. The VSP data gives information on the interval ve-
locity along the well. Since this data represent a constant
velocity between the layers in depth, we use other curves
(gamma-ray and resistivity) that are fully registered along
the well, and the seismic attributes impedance and cosine
phase, extracted on the positions of the wells, to estimate
the interval velocity with a log shape.

The next step of the workflow consists of the horizon in-
terpretation. In this step, we map the structural variation
of the main formations of the study area. The structures
mapped were the ground level, the top and base of the salt
dome, the Barra Velha formation, and the basement. This
process was performed using the OpenDtect software. We

construct the horizon cube from those five horizons by ap-
plying the method described by de Groot et al. (2010). The
horizon cube is an auto-tracker to identify multiple struc-
tures between the initial horizons using the seismic dip
field. The high density of horizons generated is used to
interpolate the velocity following geology structural varia-
tion.

The interpolation process along the horizons requires the
well log data in the time domain. This correlation is usu-
ally done with the well-seismic-tie with a stretch-squeeze
process that results in some distortions of the well log in-
formation. To avoid that, we apply the well-seismic tie
methodology developed by Gelpi et al. (2020). The pro-
posed method ties the well by applying a distortion process
on the velocity log and a rotation of the wavelet phase.
The authors use the differential evolution algorithm to es-
timate the distortion for the velocity and the phase of the
wavelet, which minimizes the difference between the syn-
thetic seismogram and the seismic trace. The differential
evolution algorithm is a global optimization method that re-
lies on mutation, recombination, and selection to evolve a
collection of candidate solutions toward an optimal state
(Price, 2013).

We can build the low-frequency velocity field by correlating
the well log with the seismic data in the time domain. Fig-
ure 3 shows the process. The interpolation starts extract-
ing the velocities values of the horizon and well log time
intersection. This process gives the individual velocity val-
ues for each horizon generated in the horizon cube and
retains the velocity variation inside the layers. The inter-
polation process uses the ExtraTrees algorithm. To train
the algorithm, we use the positional information (Inline,
Crossline, and time) and the seismic attributes (impedance
and cosine phase). After the interpolation process, the ve-
locities horizons are concatenated and resampled to the
time interval of seismic data (4 ms). For the water layer
velocity, we use 1500 m/s. For deeper sections below the
basement position, we use the highest velocities of the last
horizon to compose the low-frequency velocity field.

Figure 3: Workflow to build the low-frequency velocity field.

To analyze the reliability of the velocity field, we perform
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a time-to-depth conversion using the OpenDtect software.
The software applies the Dix (1955) for this process

z =
1

2

∫ t

0

vd(t)dt (1)

where z is the depth, t is the time, and vd is the veloc-
ity. Using this linear equation for depth conversion, as ex-
pected for a complex geological area as the pre-salt, the
horizons depth position is not correlated to the well mark-
ers. Figure 4 shows the process of adjusting the velocity
data to minimize the difference between the horizons and
well markers position in depth. To perform this adjustment,
we apply a distortion factor for the velocity extracted on
the positions of the wells (Inline and Crossline). This dis-
tortion factor is estimated using the differential evolution al-
gorithm, which minimizes the difference between the hori-
zon depth in 1 and the corresponding well marker depth
value. The process progressively adjusts the shallow layer
(ground level) to the deepest layer (Barra Velha formation).

Figure 4: Workflow to adjust the velocities for seismic-well
tie in the depth domain.

Results
The application of the proposed workflow has three steps:
the well log estimation process, the interpolation along the
horizons, and the velocity correction for time-to-depth con-
version.

Filling the velocity log for the well range requires two steps:
filling the salt section for some wells using other wells as
reference and filling the post-salt area for all the wells using
the VSP interval velocity as a reference. The initial condi-
tion of the velocity logs is shown in Figure 5. Wells 1, 2,
3, 6, and 8 have the velocity log curve registered from the
top of the salt to the reservoir (3000 to 5500 meters). We
train the ExtraTrees to estimate these logs velocities using
the log curves (gamma-ray and resistivity) and the seis-
mic attributes (impedance and cosine phase) as attributes.
Then, we predict the velocities for wells 4, 5, and 7 to fill
the salt section. The post-salt section velocity estimation
was performed similarly, using the same attributes to esti-
mate the interval velocity of VSP. The best results, where

the estimated velocity curves had a log shape, were ob-
tained for wells 1 and 4. We use this result to estimate
the post-salt velocity for all the other wells. The application
of ExtraTrees using other logs curves to train the model al-
lows the predicted velocity follows the log frequency on the
range of interval velocity. The result of velocity estimation
process is shown in Figure 5. We use a moving average
filter to smooth the logs for the interpolation process.

Figure 5: Imputation process for velocity logs. (A) Initial
condition of the logs; (B) Result of the velocity estimation
process.

Figure 6 (A and B) shows the initial grid between the wells
and Figure 6 (C and D) the result of interpolation along the
horizons. The velocity values obtained along the horizons
follows the variation on the initial grid. The good correla-
tion shows the efficiency of the ExtraTrees to estimate the
velocity values. Figure 7 shows initial low-frequency ve-
locity field. The interpolation process shows a good fit for
the expected velocity variation for each layer. The individ-
ual interpolation along each horizon of the horizon cube
allows the velocity field follows the structural variation of
the study area and keep the velocity variation inside the
layers. This is an important information since some stud-
ies have been developed to identify the velocity variation in
salt stratification (Falcão et al., 2016; Gobatto et al., 2016).

The depth conversion process using the initial velocity model
(figure 8 A) shows a difference between the horizons and
well markers of the top and base of salt at around 100 me-
ters (figure 8 B). This difference can be related to applying
the Dix conversion equation for a complex geology area as
the pre-salt. Figure 8 C shows the corrected velocity field
and figure 8 D shows the depth conversion result using the
updated velocities. Table 1 shows the distortion factor ap-
plied. We must apply two iterations to obtain the seismic
data in the depth domain correlated to the well markers.
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Figure 6: Result of interpolation process. (A - B) Initial ve-
locity grid between the wells; (C) Comparison of grid size
(400 points) and the horizon (41000 points); (D) Velocity
Horizon example.

Figure 7: Initial low-frequency velocity field.

It was necessary because the attributes used to train the
model (inline, crossline, time, and velocity) do not have a
high correlation to the distortion factor. In this case, we can
observe the variation of distortion factor in Table 1 reduces
each iteration until the correct position of the seismic hori-
zons.

The proposed methodology for low-frequency model build-
ing enables the estimation of the absolute acoustic impedance.
This process requires the combination of the low-frequency
component and the relative acoustic impedance, applying
the following equation

IPabs = IPlf + α ∗ IPrel (2)

where the IPabs is the absolute acoustic impedance, IPlf

is the low-frequency acoustic impedance, IPrel is the rela-
tive acoustic impedance, and α is a scale factor estimated
by

Figure 8: Result of velocity field adjustment and time-to-
depth conversion. (A) Initial velocity field; (B) Depth con-
version with miss ties between horizons and well markers;
(C) Corrected velocity field; (D) Seismic-well tie in deepth
domain.

α =
RMS(IPwell)

RMS(IPrel)
(3)

where RMS is the root-mean-square and IPwell is the
acoustic impedance log filtered with a band-pass on the
same frequency of the seismic data (5-40 Hz). Figure 9
shows the result of the absolute acoustic impedance in the
depth domain and the correlation to the well log. We can
observe a high correlation between the log variation and
the absolute acoustic impedance field stratification. This
result is an important tool for seismic interpretation due
to the accuracy of depth positioning and the relevant in-
formation on acoustic impedance to identify hydrocarbon
occurrence in the study area.

Conclusions
Applying the proposed workflow for the study area enables
a precise correlation of the seismic data in the depth do-
main to the well markers, even without the previous veloc-
ity information from velocity analysis. The low-frequency
velocity field obtained in this study reliably represents the
geology of the study area. Using a machine learning algo-
rithm to interpolate the well log velocity enables more reli-
able velocity estimation for all the seismic volume. There-
fore, using highly correlated attributes is important to pre-
cisely estimate the seismic volume’s velocity. Applying the
interpolation for each horizon individually enables the ve-
locity to follows the structural variation. Using an evolu-
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Table 1: Distortion factor applied to correct the velocity for time-to-depth conversion. The process needs two iterations to
minimize the difference between the seismic horizon and the well log markers.

Corrections Horizons Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8

Iteration 1

Ground Level 1,010538 0,9978 0,9972 1,00275 1,00005 1,03558 1,0219 1,0271
Top of Salt 0,7 0,7381 1,1999 0,76758 0,83955 0,88007 0,8671 0,9148

Base of Salt 0,9983635 0,9887 0,8822 1,05714 1,13118 0,9467 0,9333 0,8692
Barra Velha 0,9319422 1,1834 1,1265 1,3 1,09047 0,7 1,0078 1,2127

Iteration 2

Ground Level 1,0004237 1,0004 0,9997 1,00045 0,99996 0,99993 1,0002 1,0001
Top of Salt 1,0064645 1,0021 0,9993 1,00064 1,00033 1,00023 1,0003 1,0002

Base of Salt 0,9994157 1 0,995 1,00104 1,00108 1,00208 1,0001 0,9957
Barra Velha 0,9929234 1,0086 1,0123 1,06135 1,00484 0,92026 1,0059 1,0133

Figure 9: Resulted Acoustic Impedance field and compar-
ison with the acoustic impedance log.

tionary algorithm facilitates the estimation of velocity ad-
justment to minimize the difference between the seismic
data in depth and well markers. Applying the derived low-
frequency model to estimate the absolute acoustic impedance
enables the development of more detailed studies for reser-
voir characterization in the depth domain. Finally, the pro-
posed workflow estimates important parameters (velocity
and acoustic impedance) in depth positioning that ties to
the well markers.
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