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Abstract 

We report on the use of time-to-depth conversion after a 
time-remigration of seismic data. Our procedure is based 
on a Kirchhoff-type, isochrone-stack, integral operator. We 
have tested our algorithm on synthetic and real datasets. 
The real dataset used in this work is the public-domain 
Nankai Trough, available through the University of Hawaii. 
Using two velocity models (one accurate and other less 
accurate), we were able to successfully remigrate the 
Kirchhoff result using a less accurate velocity field, and 
convert it to depth via a direct time stretch of the time 
dimension. 

Introduction 

Prestack time-migration (usually Kirchhoff) is still a very 
usable imaging tool in situations in which lateral velocity 
variation is acceptable and/or subsurface geology is not so 
complex above imaging targets, structurally or physically 
speaking. When these assumptions are observed in a 
controlled way (i.e., a good knowledge of velocities and 
traveltimes), time-migration followed by a direct time-to-
depth conversion by simply stretching the time axis into a 
depth axis may yield good imaging results, although 
systematic errors are always present (Black and 
Brzostowski, 1994). In this way, the image-ray concept 
(Hubral, 1977) may constitute a direct and succinct 
application, either using raytracing or simply via direct 
mapping.  

Also it is known that in many exploration situations or even 
during appraisal times, when all imaging products are not 
already fully available to final interpretation purposes 
and/or deadlines are getting closer towards the choice of 
the site of a drilling well, quick procedures of depth imaging 
are common practice. This gives time-to-depth conversion 
a valuable and usable depth imaging status based on the 
necessities and limitations of information of a seismic 
dataset available to work with – i.e., when only 2D lines 
exist, instead of 3D interpretable volumes. This work is a 
study of a possible workflow towards depth imaging when 
one has limited data and too many targets to image. 

Let us consider the fact that with the present procedure, 
when new velocity steps are available for processing, an 
remigrated output in the time domain is an immediate 
option, instead of a new migration run. And if this 

procedure is realized using a single step as depicted here, 
computational gains are immediate. The process is not free 
of non-uniqueness, since the most improved velocity 
model cannot be as equal to the least accurate model and 
this choice should serve as common sense to define the 
need for a new migration processing.  
 
One of the advantages of working in the time domain 
concerns the use of RMS velocities for imaging or how the 
recorded wavefield extrapolation incorporates the velocity 
fields representative of subsurface rocks (Cunha and 
Rosa, 2001). In the time domain, for example, migration 
considers only the cumulative or average effect of the 
velocities of rocks traversed by the wave on its roundtrip 
path between the surface and several reflecting interfaces. 
Computationally, this means that traveltimes can be 
approximated by a double-square-root (DSR) equation, 
and in the case of finite offset each "branch" of the 
traveltime is associated with each one of these DSRs. 
Physically, using RMS velocities indicates that each 
branch of the traveltime only considers this constant 
average velocity to perform a stack along a diffraction 
curve and/or along an isochrone curve. Thus, everything 
works as if above the imaging (output) coordinate the 
medium were considered as homogeneous (constant 
velocity) (Cunha and Rosa, 2001). In principle, this allows 
one to use DSR formulas for constant velocity for the 
traveltime branches. For v(z) medium, this is a 

straightforward relationship. Problems appear when lateral 
variation are present, which will give rise to time skewing 
and lateral shifts and formation of plumes (Black and 
Brzostowski, 1994; Bevc et al., 1995). 
 
In this work we will show the results of time-remigration in 
some (simple and complex) 2D synthetic datasets and the 
result in one example of a real data (Nankai Trough). In 
those examples in which it is possible to convert the final 
image to the depth domain by a simple stretch of the time-
migrated axis this will be directed assigned. On the other 
hand, in those models in which it is necessary to use 
image-ray tracing in order to perform the transformation, 
this will be suppressed, since currently we are working on 
this issue.  
 
The most complex 2D synthetic model is physically 
representative of the pre-salt geology of the Brazilian 
offshore East Margin basin, composed of pre-salt, drift and 
open marine sedimentary sections over a basement ridge 
(Oliveira and Ferreira, 2009). The seismic data of this later 
model was realized separately and provided as direct input 
to the imaging procedures (migration and remigration), 
together with their respective velocity models, which were 
updated from the model used in Oliveira and Ferreira 
(2009) with the inclusion of lateral velocity variations. The 
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tests realized with synthetic data have shown that the 
procedures used in this work are kinematically accurate 
and reproduce final images similar to those directly 
migrated with more accurate velocities. As for the 
amplitudes, weighting functions already described in the 
literature were applied (e.g., Tygel et al., 1998; and 
Martins, 2001), whose main purpose is to treat the input 
amplitudes in a certain way so that geometrical-spreading 
factors are correctly transformed. The process can also be 
performed with amplitude preservation (Schleicher and 
Bagaini, 2003), when the same procedures do not alter the 
input amplitudes. 
 
In the example using real seismic data, the existing velocity 
model was transformed to the time domain and one of its 
versions, transformed into a separate file, had its velocity 
values divided by a constant factor, giving rise to a velocity 
field distinct from the original. This procedure was carried 
out in order to have two different velocity models, validating 
the remigration procedure. 
Method 

Kirchhoff-type remigration theory 

Kinematically discussed in Hubral at al. (1996b) and 
mathematically shown in Tygel et al. (1996), true-amplitude 
remigration is achieved by chaining weighted diffraction-
stack migration and isochrone-stack demigration. In terms 
of reflection imaging, it represents one of the methods 
developed to solve specific imaging problems, the one that 
deals with “the updating of a depth-migrated seismic image 

according to a different or improved macrovelocity model” 
(Hubral et al., 1996a,b).  

We have emphasized the word “depth-migrated” above 
mainly because, originally, the remigration problem in the 
context of the unified approach of Hubral and Tygel was 
developed considering the dual operations of diffraction 
and isochrone stacking, one performed in time and the 
other performed in the depth domain. This is an important 
observation, since in the chaining of the two true-amplitude 
imaging procedures – migration and demigration – one has 
to multiply their respective weight-functions, which do not 
depend on any reflector property, but are simulated using 
no other information than that provided by the given 
smooth macrovelocity model. Thus, a depth-related 
procedure. Our approach here for remigration, on the other 
way, is entirely performed in the time domain. Thus, it is a 
time-remigration. Also, we have reduced the procedure to 
the 2.5D domain (Martins, 2001), which is similar to other 
familiar 2.5D Kirchhoff-type imaging procedures that have 
already been published somewhere, like migration, DMO, 
OCO, MZO. 

Hubral et al. (1996a) discusses time-remigration in the 
context of seismic image-waves, but restricted to the zero-
offset domain and constant-velocity medium. To our 
knowledge, this is the only reference to time-remigration, 
besides the geometrical one in Schleicher et al. (1997) in 
constant-velocity medium using the Thales circle in the 
depth domain and its parabola counterpart in the time 
domain. 

In the examples that follows a tilde symbol (“~”) over 
functions and variables refer to the output model, including 

spatial positions, time coordinates and velocities. The 
remaining variables and functions without tildes refer to the 
input model, also including spatial positions, time 
coordinates and velocities. The input and output model 
both consider an arbitrary, single fold measurement 
configuration (i.e., sources and receivers are single pairs; 
see Tygel et al., 1996) of point sources and receivers 
distributed along the Earth surface, the location of them are 

described by a 2-D vector parameter, �⃗�  = (𝜉1, 𝜉2)T. When 

referred freely, vector parameter �⃗�  varies in A, called 
migration aperture; or when referred specifically, as a 
stationary point, it determines an aperture constrained by 
an specific condition.  

Stacking integral 

Similar to the Kirchhoff-type theory described in Tygel et. 
al (1998) and Schleicher and Bagaini (2003), for each point 
(�̃�, �̃�) in the output time-remigrated section to be simulated, 

the stack result 𝐼(�̃�, �̃�) is obtained by a weighted stack of 

the input data, represented by the following integral 

𝐼(�̃�, �̃�) =
1

√2𝜋
∫ 𝑑𝑥
𝐴

𝐾𝑅𝑀
(2.5𝐷)(𝑥; �̃�, �̃�)𝜕𝑡

1

2𝐼(𝑥, 𝑡)|𝑡=𝑡𝑅𝑀(𝑥; �̃�, �̃�),(1) 

where 𝐼(𝑥, 𝑡) is the input time-migrated (analytic) seismic 

section that is to be weighted by 𝐾𝑅𝑀
(2.5𝐷)(𝑥; �̃�, �̃�) and then 

summed up along the stacking line or inplanat 𝑡 =
𝑡𝑅𝑀(𝑥; �̃�, �̃�) (Tygel et. al, 1996). Both functions are 

dependent on the point (�̃�, �̃�) where the stack is to be 

placed, and on the variable 𝑥 that specifies the location of 
the traces being summed in the stack. Moreover, A 

denotes the (spatial limited) aperture of the stack, the 
range of midpoints (in a common-offset gather) available in 
the time-migrated input section, 𝐼(𝑥, 𝑡). Finally, the time-

reverse half-derivative 

𝜕−𝑡
1/2[𝑓(𝑡)] =

1

√2𝜋
∫ |𝜔|

1

2
+∞

−∞
𝑒−𝑖

𝜋

4
𝑠𝑖𝑔𝑛(𝜔)

𝐹(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔    (2) 

is applied in order to correct the pulse shape. In 2.5D this 
is a counterpart to the full 3D Kirchhoff-type migration 
(Bleistein et al., 1987; Schleicher et al., 1993).The stacking 
line 𝑡 = 𝑡𝑅𝑀(𝑥; �̃�, �̃�) is defined by the kinematics of the 

operation, and the weight-function 𝐾𝑅𝑀
(2.5𝐷)(𝑥; �̃�, �̃�) will be 

determined by the desired amplitude behaviour – true-
amplitude and amplitude-preserving are the most common 
choices (Schleicher and Bagaini, 2003). 

Stacking line 

In constant-velocity medium and zero-offset configuration, 
Hubral et al. (1996a) derivated the following stacking line 
for the remigration problem as a Huygens image wave in 
the time domain 

𝑡 = √�̃�2 +
4(𝑥−𝑥)2

�̃�2−𝑣2 .                           (3) 

In the theory of velocity continuation of Fomel (2003), this 
is the analytic formula of the "wavefront" continuation or the 
summation path of the residual migration operator, 
augmented by a finite-offset term (not shown here). Here, 

�̃�2and 𝑣2 are constant migration velocities in the output 
(time-remigrated) and input (time-migrated) domains, 
respectively. Eq. (3) was obtained as a special case of a 
depth-remigration, by simply substituting z = vt/2 and �̃� =
�̃�𝑡/2 in both domains. Viewed as a chaining of 
migration/demigration procedures, the depth counterpart 
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of Eq. (3) is obtained as the envelope of the ensemble of 
half-circle isochrones, which is the desired Huygens image 
wave at the instant of migration velocity 𝑣. Eq. (3) is not a 

traveltime, since there is no wavefield propagation, but only 
a stacking curve along an inplanat surface. 

In inhomogeneous medium and considering the presence 
of mild lateral velocity variation, for a finite-offset (2h) 
configuration we have 

𝑡 = √�̃�𝐷
2 −

4ℎ2

𝑣𝑅𝑀𝑆
2 √1 −

(𝑥−𝜉∗(𝑥))2

(
𝑣𝑅𝑀𝑆
2

4
)�̃�𝐷

2
.                 (4) 

In (4), �̃�𝐷  is the diffraction traveltime for coordinate (�̃�, �̃�) in 

the output space, represented by two DSRs for the two 
branches of the traveltime to the image point, where 
velocity �̃�𝑅𝑀𝑆 is used relative for each source and 

geophone in that domain. Here, stationary value 𝜉∗(�̃�) is 

the coordinate that relates the inplanat 𝑡𝑅𝑀(𝑥; �̃�, �̃�) with its 

respective coordinates in the input and output domains. 
Note that stacking line (4) is spatially constrained, both by 
the existence of the stationary coordinate 𝜉∗(�̃�) and by the 

curvature of the inplanat (i.e.,𝑣𝑅𝑀𝑆) in the input domain. 

These features will be commented below, when dealing 
with aperture issues. A complete geometrical explanation 
of this stationary condition is described in Tygel et al. 
(1996). 

Weight-function 

The final remigration weight-function is the product of 2.5D 
migration and demigration weight-functions (Tygel et al., 
1996) that may also be expressed as in-plane and out-of-
plane factors (Martins, 2001). Thus, in the time domain we 
consider, approximately: 

𝐾𝑅𝑀
(2.5𝐷)(𝑥; �̃�, �̃�) =

√2

2

�̃�

𝑣𝑅𝑀𝑆
3/2 √

1

𝑡𝑆
+

1

𝑡𝐺
(
𝑡𝑆

𝑡𝐺
+

�̃�𝐺

𝑡𝑆
)

1

(𝑡1+𝑡2)
√

1

𝑡1
+

1

𝑡2
, (5) 

where �̃�𝑆 and �̃�𝐺 are DSRs for source and receivers in the 

output domain for coordinate (�̃�, �̃�) and �̃�𝑅𝑀𝑆, while 𝑡1 and 

𝑡2 are DSR equations of the times (3) or (4). Dimensionally, 

this weight-function is expressed in [s(1/2)/meters(3/2)] units. 
Apart from the form of the weight-function in (5), a 
dimensionless stretch factor and a term regarding “local 
dip” at the reflector in the time domain may also be 
multiplied when referred. Other terms that may be 
multiplied in (5) are square roots of absolute values of 
determinants of Hessian matrices or, in 2.5D, curvatures of 
diffraction traveltimes for points in the input and output 
domains (Tygel et al., 1998; Martins, 2001). 

Aperture 

In (4), two conditions constrain the aperture range for time-

remigration. The first is offset-dependent (i.e., 𝜏𝐷
2 >

4ℎ2/𝑣𝑅𝑀𝑆
2 ), which means that in all offsets, very shallow to 

shallow events (whenever they are recorded) must be 
disregarded or are not imaged around any stationary value 
𝜉∗(�̃�) that may exist along these shallow time intervals. For 

the zero-offset situation, there is no constrain at all. The 

second constraint is related to the condition (𝑥 − 𝜉∗(�̃�))2< 

(
𝑣𝑅𝑀𝑆

2

4
)�̃�𝐷

2 , which restricts the number of traces around the 

stationary value 𝜉∗(�̃�). So far, in the following examples, 

we have used this criterion only in a very “ad hoc” way, 
depending on each case. 

Examples 

Synthetic data examples 

We have tested our algorithm in two synthetic seismic 
datasets. Kirchhoff time-migration is used in all examples, 
unless otherwise stated. 

Single reflector model – The first example represents a 

single interface of a syncline over a half-space. We have 
introduced a discontinuity in the form of a subvertical fault 
centered around distance 4.0 km in order to generate 
diffractions. The velocity of the layer over the interface is 
set to 2.5 km/s. We have modeled a common-offset section 
with 2h = 50 m. Model parameters are Nx = 400, Nz = 200, 
dx = dz = 25 m, while data parameters are Ntraces=300, dt 
= 8 msec, where trace spacing equals to dx specified 
above, as well as source and geophone intervals. The 
seismic section of Figure 1 depicts the modeled seismic 

section together with the typical bowtie pattern of 
reflections associated with this kind of model. In this 
example, a gradient of the order 0.03 Hz was included for 
lateral velocity variations. 

 
Figura 1 - Synthetic seismic data. 

 
Presalt model – Our next synthetic example considers the 

previously model studied in Oliveira and Ferreira (2009), 
which describe the results of the modeling of a simple 2D 
seismic dataset acquired over a representative presalt 
model derived from any of the Brazil East margin offshore 
basins (Figure 2). The geologic model with its respective 

interval velocities is originally made of four sequences: (I) 
the basement (6.5 km/s); (II) the presalt section (4.5 km/s); 
(III) the salt layer (5.5 km/s); (IV) the Tertiary-Upper 
Cretaceous section, with a constant velocity gradient v(z). 
For the next example that follows, this model was updated 
to include lateral velocity variations in the Cretaceous 
section and in the sag/rift section. 
 
Figure 3 depicts one common-offset section with 2h = 50 

m. Again, the main features observed are good continuity 
of the flat and linear events, like the water line, the water 
bottom, parts of the bottom of the salt layer and the high of 
the basement and the ramp of the basement. But this time, 
due to lateral velocity variations in the sections commented 
above, some skewing of the reflections are also observed 
to the right of the section. Also it is evidente that due to the 
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presence of a lateral velocity variation, an “advance” in 
reflection recording introduces a “time-dip” along the whole 
section, a feature that must be “remedied” for interpretation 
purposes or serve as decision to a depth-miration Imaging 
(Black and Brzostowski, 1994). 

 
Figure 2 - Presalt depth velocity model (Oliveira and 

Ferreira, 2009). 
 
In order to time-migrate the seismic section depicted in 
Figure 3, it was necessary to derive the RMS velocity field 

that were used to extrapolate the wavefield in the time 
domain. Figure 4 is the time-domain equivalent of the 
depth velocity model seen in Figure 2. It is interesting to 

note in this model that since there is a lateral velocity 
variation in the sag/rift section, times to the top of the 
basement up to 10 km are faster than the ones over its 
ridge section.  

 
Figure 3 - Common-offset section (2h = 50 m) simulating 

a 2D seismic marine acquisition over the area of the 
velocity model in Figure 2. 

 

Real data example – Nankai Trough 

Published by Moore et al. (1990), the Nankai trough data 
considered here is a subset of a larger dataset and that is 
made available by the University of Hawaii for download. 
In Forel et al. (2005), this data is processed using CWP 
Seismic Unix tools, for didactical reasons. It is part of the 
2D regional line NT62-8 (Moore et al., 1990), with CDP 
range 900-1300 (401 bins, sorted from 326 shots in the 

range 1687-2012, dx = 6.67 among bins) and dt = 4 msec 
(2750 time-samples or 11 seconds of record). Figure 5 

depicts the zero-offset section that was processed and 
stacked by Forel et al. (2005) and commented in their 
primer guidelines. 

 
Figure 4 – Velocity model in the time domain (RMS). 
Compare with Figure 2. 

 

 
Figure 5 – Zero-offset section of the Nankai data. Line 

NT62-8 (Moore et al., 1990). 

Results 

Synthetic data examples 

The seismic section of Figure 1 was time-migrated using 

the true velocity 2.5 km/s and using a velocity set to 2.0 
km/s, this latter in order to generate an input section to the 
remigration process. Figure 6 depicts the two time-

migrated sections. It is clear that when the wrong velocity 
is used the final image is not completely focused in time.  

Figure 7 depicts two results: the first (top section) is the 

result of time-remigration of the time-migrated section 
depicted at the bottom of Figure 6. Clearly the remigration 

imaging was able to focus the latter section, which is 
equivalent to the top section of Figure 6.  

The second result in Figure 7 (bottom) is the time-to-depth 

conversion, obtained directly by simply stretching the time 
axis to depth. Since this is a simple example, using a single 
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velocity, the transformation was able to correctly map the 
reflector from time to depth. 

 
Figure 6 – Comparison of Kirchhoff time-migrated 

sections: right velocity (above) and wrong velocity (below). 

 

 
Figure 7 – Top: Kirchhoff time-remigrated section of 
Figure 6 (bottom). Bottom: time-to-depth conversion of the 

tme-remigrated section (top). 

Finally, in Figure 8 and Figure 9 it is depicted the 

processes of Kirchhoff migration and remigration for the 
presalt model common-offset section of Figure 3. For this 

example, a Ormsby passband filter was first applied to the 
input section of Figure 3 in order to suppress high-

frequency numerical noise. 

 
Figure 8 – Kirchhoff time-migration for the common-offset 
section in Figure 3. Left: accurate velocity result. Right: 

under-migrated result. 

 
Figure 9 – Kirchhoff time-remigration result for the under-
migrated section of Figure 8 (right panel). Compare it with 

the section in the same figure (left panel). 

Real data example – Nankai Trough 

For processing purposes (Forel et al., 2005), this dataset 
was first resampled from 2 msec to 4 msec, and anti-alias 
filtered using 16-21-85-95 Hz as threshold in order to avoid 
frequency-folding beyond Nyquist. Due to its nature of 
being a seismic data obtained over deep waters, the 
recorded reflections show little moveout, which represents 
a challenge to seismic processing and velocity picking via 
semblance analysis. Also, the input data was previously 
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corrected for spherical divergence using an exponent 
power t2.21 as gain function (Forel et al., 2005). 

 
Figure 9 – Comparison of Kirchhoff results for the Nankai 
data: time-migrated (left); under-migrated (center); and 
time-remigrated (right).  

In Figure 9 we show the results of Kirchhoff time-migration 

(migrated and under-migrated) (left and center panels), 
and the remigration result (right panel) for the seismic 
section of Figure 5. Note that at the dècollement level 

(around 7.5 s) the presence of migration smiles indicates 
higher velocity values (over-migration). In fact, in Forel et. 
al (2005) it was suggested that the current velocity model 
available for download for this example should be 
adequately updated. 

Conclusions 

We have tested a Kirchhoff time-remigration process in 
synthetic and real datasets. The main synthetic dataset is 
the one previously studied in Oliveira and Ferreira (2009), 
which is physically representative of the presalt geology of 
the Brazilian East Margin basins, updated to include lateral 
velocity variations. The real dataset is a zero-offset subset 
of the Nankai data published by Moore et al. (1990) and 
reprocessed in Forel et al. (2005) for didactical reasons. 
 
The tests carried out so far showed that the result of 
remigration depends on the quality of the input section (i.e., 
sub-migrated section). This includes resolution, noise 
content and an effective QC eventually realized (e.g., 
mainly frequency filtering). 
 
Intrinsic time migration errors (see Black and Brzostowski, 
1994) were considered in this work, but not commented or 
corrected with any “remedy”. Further time-to-depth 
conversion should accommodate or minimize such 
systematic errors or even others methodologies. 
 
The article addresses both the kinematics (i.e., traveltimes) 
and the dynamics (weight-functions and amplitudes) of 
imaging by remigration, but greater emphasis is put on the 
kinematic imaging results only, for comparison reasons. 
The dynamic aspects will be considered in future works 
somewhere by the first author. 
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